Thursday, April 18, 2024, 7:23 PM
Site: Learnbps
Class: BPSS (SCI) Science Standards (S-SCI)
Glossary: 7th Grade Life Science
MS-LS1

SCI-MS.LS1

BPSS-SCI logo DCI Life Science LS1

From Molecules to Organisms: Structure and Processes

Performance Expectations

LS1: help students formulate an answer to the question, “How can one explain the ways cells contribute to the function of living organisms. ”

The LS 1 Disciplinary Core Idea is organized into four sub-ideas: Structure and Function, Growth and Development of Organisms, Organization for Matter and Energy Flow in Organisms, and Information Processing . Students can gather information and use this information to support explanations of the structure and function relationship of cells. They can communicate understanding of cell theory. They have a basic understanding of the role of cells in body systems and how those systems work to support the life functions of the organism. The understanding of cells provides a context for the plant process of photosynthesis and the movement of matter and energy needed for the cell. Students can construct an explanation for how environmental and genetic factors affect growth of organisms. They can connect this to the role of animal behaviors in reproduction of animals as well as the dependence of some plants on animal behaviors for the ir reproduction. 

Calculation Method for DCI

Disciplinary Core Ideas are larger groups of related Performance Expectations. So the Disciplinary Core Idea Grade is a calculation of all the related Performance Expectations. So click on the Performance Expectation name below each Disciplinary Core Idea to access the learning targets and proficiency scales for each Disciplinary Core Idea's related Performance Expectations.

SCI-MS.LS1.01

Life Science Logo7th Grade (SCI) Life Science Standards
[LS1] From Molecules to Organisms: Structures and Processes

SCI-MS.LS1.01 Conduct an investigation to provide evidence that living things are unicellular or multicellular and may have different cell types.

Clarification Statement: Emphasis is on developing evidence that living things are made of cells, distinguishing between living and non-living things, and understanding that living things may be made of one cell or many and varied cells.
Disciplinary Core Ideas
LS1.A: Structure and Function All living things are made up of cells, which is the smallest unit that can be said to be alive. An organism may consist of one single cell (unicellular) or many different numbers and types of cells (multicellular).


Student Learning Targets:

Knowledge Targets

  • I can recognize or recall specific terminology (prokaryote, eukaryote, multicellular, unicellular, cell, microscope).  
  • I can identify an organism as unicellular or multicellular (using a microscope).

Reasoning Targets

  • I can compare and contrast prokaryotic and eukaryotic cells.

Skills (Performance) Targets

  • I can

Product Targets

  • I can

Proficiency Scale

The Student can ...
1 Beginning
... with help, demonstrate a partial understanding of some of the simpler details and processes (Score 2.0 content) and some of the more complex ideas and processes (Score 3.0 content).
  • descriptors
2 Developing
... demonstrate no major errors or omissions regarding the simpler details and processes but exhibits major errors or omissions regarding the more complex ideas and processes (Score 3.0 content).
  • recognizes or recalls specific terminology.
  • identifies an organism as unicellular or multicellular (using a microscope).
Essential Vocabulary: Prokaryote, Eukaryote, multicellular, unicellular, cell, microscope parts
3 Proficient
“The Standard.”
... demonstrate no major errors or omissions regarding any of the information and processes that were end of instruction expectations.
  • compares and contrasts prokaryotic and eukaryotic cells.
  • shows understanding of the characteristics of a living thing.
  • recognizes the cell as the smallest unit of a living thing and that multicellular organisms have different types of cells
  • concludes that the use of technology has advanced our understanding of cells (microscope)
Sample Activity:
Completes a Venn diagram comparing prokaryotes and eukaryotes
Conducts an investigation regarding living vs. nonliving things
Microscope lab viewing different types of cells
History of the discovery of cells

4 Advanced
... demonstrate in-depth inferences and applications regarding more complex material that go beyond end of instruction expectations.
  • descriptors

Click Here to view the Proficiency Scale

Resources

Vocabulary

  • Prokaryote
  • Eukaryote
  • multicellular
  • unicellular
  • cell
  • microscope

Websites

SCI-MS.LS1.02

Life Science Logo7th Grade (SCI) Life Science Standards
[LS1] From Molecules to Organisms: Structures and Processes

SCI-MS.LS1.02 Develop and use a model to describe the function of a cell as a whole and ways cell parts (organelles) contribute to the cell functions.

Clarification Statement: Emphasis is on the cell functioning as a whole system and the primary role of identified organelle of the cell, specifically the nucleus, chloroplasts, mitochondria, cell membrane, and cell wall.
Disciplinary Core Ideas
LS1.A: Structure and Function Within cells, special structures are responsible for particular functions, and the cell membrane forms the boundary that controls what enters and leaves the cell.


Student Learning Targets:

Knowledge Targets

  • I can recognize or recall specific terminology (cell, nucleus, chloroplast, mitochondria, cell membrane, cell wall, ribosome, cytoplasm).  
  • I can label the parts of a plant and animal cells.  

Reasoning Targets

  • I can explain how each organelle contributes to the function of a cell.

Skills (Performance) Targets

  • I can construct a cell model of a plant or animal cell.

Product Targets

  • I can

Proficiency Scale

The Student can ...
1 Beginning
... with help, demonstrate a partial understanding of some of the simpler details and processes (Score 2.0 content) and some of the more complex ideas and processes (Score 3.0 content).
  • descriptors
2 Developing
... demonstrate no major errors or omissions regarding the simpler details and processes but exhibits major errors or omissions regarding the more complex ideas and processes (Score 3.0 content).
  • recognizes or recalls specific terminology.
  • label the parts of a plant and animal cells.
Essential vocabulary: cell, nucleus, chloroplast, mitochondria, cell membrane, cell wall, ribosome, cytoplasm
3 Proficient
“The Standard.”
... demonstrate no major errors or omissions regarding any of the information and processes that were end of instruction expectations.
  • explain the function of each organelle and how the organelle contributes to the function of a cell.
  • construct a cell model of a plant or animal cell.
  • compare and contrast plant and animal cells
Sample Activity:
make a model of a cell, computer or 3D
create a cell analogy project, ex. Cell as a city
complete a Venn diagram for plant and animal cells

4 Advanced
... demonstrate in-depth inferences and applications regarding more complex material that go beyond end of instruction expectations.
  • descriptors

Click Here to view the Proficiency Scale

Resources

Vocabulary

  • cell
  • nucleus
  • chloroplast
  • mitochondria
  • cell membrane 
  • cell wall 
  • ribosome
  • cytoplasm

Websites

  • Title of website with a URL to open in a new window
  • Chapter 2 of Life Science textbook

SCI-MS.LS1.03

Life Science Logo 7th Grade (SCI) Life Science Standards
[LS1] From Molecules to Organisms: Structures and Processes

SCI-MS.LS1.03 Use evidence to model how the body is a system of interacting subsystems composed of groups of cells.

Clarification Statement: Emphasis is on the conceptual understanding that cells form tissues and tissues form organs specialized for particular body functions. Examples could include the interaction of subsystems within a system and the normal functioning of those systems.
Disciplinary Core Ideas
LS1.A: Structure and Function In multicellular organisms, the body is a system of multiple interacting subsystems. These subsystems are groups of cells that work together to form tissues and organs that are specialized for particular body functions.


Student Learning Targets:

Knowledge Targets

  • I can

Reasoning Targets

  • I can

Skills (Performance) Targets

  • I can

Product Targets

  • I can

Proficiency Scale

The Student can ...
1 Beginning
... with help, demonstrate a partial understanding of some of the simpler details and processes (Score 2.0 content) and some of the more complex ideas and processes (Score 3.0 content).
  • descriptors
2 Developing
... demonstrate no major errors or omissions regarding the simpler details and processes but exhibits major errors or omissions regarding the more complex ideas and processes (Score 3.0 content).
  • descriptors
3 Proficient
“The Standard.”
... demonstrate no major errors or omissions regarding any of the information and processes that were end of instruction expectations.
  • descriptors
4 Advanced
... demonstrate in-depth inferences and applications regarding more complex material that go beyond end of instruction expectations.
  • descriptors

Resources

Vocabulary

  • words
  • list

Websites

  • Title of website with a URL to open in a new window

SCI-MS.LS1.04

Life Science Logo 7th Grade (SCI) Life Science Standards
[LS1] From Molecules to Organisms: Structures and Processes

SCI-MS.LS1.04 Use evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction.

Clarification Statement: Examples of behaviors that affect the probability of animal reproduction could include nest building to protect young from cold, herding of animals to protect young from predators, and vocalization of animals and colorful plumage to attract mates for breeding. Examples of animal behaviors that affect the probability of plant reproduction could include transferring pollen or seeds and creating conditions for seed germination and growth. Examples of plant structures could include bright flowers attracting butterflies that transfer pollen, flower nectar and odors that attract insects that transfer pollen, and hard shells on nuts that squirrels bury.
Disciplinary Core Ideas
LS1.B: Growth and Development of Organisms Animals engage in characteristic behaviors that increase the odds of reproduction. Plants reproduce in a variety of ways, sometimes depending on animal behavior and specialized features for reproduction.


Student Learning Targets:

Knowledge Targets

  • I can

Reasoning Targets

  • I can

Skills (Performance) Targets

  • I can

Product Targets

  • I can

Proficiency Scale

The Student can ...
1 Beginning
... with help, demonstrate a partial understanding of some of the simpler details and processes (Score 2.0 content) and some of the more complex ideas and processes (Score 3.0 content).
  • descriptors
2 Developing
... demonstrate no major errors or omissions regarding the simpler details and processes but exhibits major errors or omissions regarding the more complex ideas and processes (Score 3.0 content).
  • descriptors
3 Proficient
“The Standard.”
... demonstrate no major errors or omissions regarding any of the information and processes that were end of instruction expectations.
  • descriptors
4 Advanced
... demonstrate in-depth inferences and applications regarding more complex material that go beyond end of instruction expectations.
  • descriptors

Resources

Vocabulary

  • words
  • list

Websites

  • Title of website with a URL to open in a new window

SCI-MS.LS1.05

Life Science Logo7th Grade (SCI) Life Science Standards
[LS1] From Molecules to Organisms: Structures and Processes 

SCI-MS.LS1.05 Construct a scientific explanation based on evidence for how environmental and genetic factors influence the growth of organisms.

Clarification Statement: Examples of local environmental conditions could include availability of food, light, space, and water (photosynthesis). Examples of genetic factors could include large breed cattle and species of grass affecting growth of organisms. Examples of evidence could include drought decreasing plant growth, fertilizer increasing plant growth, different varieties of plant seeds growing at different rates in different conditions, and fish growing larger in large ponds than they do in small ponds.
Disciplinary Core Ideas
LS1.B: Growth and Development of Organisms Genetic factors as well as local conditions affect the growth of the adult plant.


Student Learning Targets:

Knowledge Targets

  • I can

Reasoning Targets

  • I can

Skills (Performance) Targets

  • I can

Product Targets

  • I can

Proficiency Scale

The Student can ...
1 Beginning
... with help, demonstrate a partial understanding of some of the simpler details and processes (Score 2.0 content) and some of the more complex ideas and processes (Score 3.0 content).
  • descriptors
2 Developing
... demonstrate no major errors or omissions regarding the simpler details and processes but exhibits major errors or omissions regarding the more complex ideas and processes (Score 3.0 content).
  • descriptors
3 Proficient
“The Standard.”
... demonstrate no major errors or omissions regarding any of the information and processes that were end of instruction expectations.
  • descriptors
4 Advanced
... demonstrate in-depth inferences and applications regarding more complex material that go beyond end of instruction expectations.
  • descriptors

Resources

Vocabulary

  • words
  • list

Websites

  • Title of website with a URL to open in a new window

SCI-MS.LS1.06

Life Science Logo7th Grade (SCI) Life Science Standards
[LS1] From Molecules to Organisms: Structures and Processes 

SCI-MS.LS1.06 Construct a scientific explanation based on evidence for the role of photosynthesis in the cycling of matter and flow of energy into and out of organisms.

Clarification Statement: Emphasis is on tracing movement of matter and flow of energy
Disciplinary Core Ideas
LS1.C: Organization for Matter and Energy Flow in Organisms Within individual organisms, food moves through a series of chemical reactions in which it is broken down and rearranged to form new molecules, to support growth, or to release energy.
PS3.D: Energy in Chemical Processes and Everyday Life Cellular respiration in plants and animals involve chemical reactions with oxygen that release stored energy. In these processes, complex molecules containing carbon react with oxygen to produce carbon dioxide and other materials (secondary)


Student Learning Targets:

Knowledge Targets

  • I can recognize or recall specific terminology (photosynthesis, glucose, chloroplast, energy, matter, respiration, products, reactants).  
  • I can write the formula for photosynthesis.  
  • I can write the formula for respiration. 

Reasoning Targets

  • I can describe the process of photosynthesis using raw materials (reactants) and the production of wastes (products) in the storage of energy.  
  • I can describe the relationship between photosynthesis and respiration.  

Skills (Performance) Targets

  • I can

Product Targets

  • I can

Proficiency Scale

The Student can ...
1 Beginning
... with help, demonstrate a partial understanding of some of the simpler details and processes (Score 2.0 content) and some of the more complex ideas and processes (Score 3.0 content).
  • descriptors
2 Developing
... demonstrate no major errors or omissions regarding the simpler details and processes but exhibits major errors or omissions regarding the more complex ideas and processes (Score 3.0 content).
  • recognize or recall specific terminology.
  • write the equation for photosynthesis.
  • write the equation for cellular respiration. 
  • compare and contrast cell transport types
Vocabulary: photosynthesis, glucose, chloroplast, energy, matter, respiration, products, reactants, active transport, endocytosis, exocytosis, passive transport, osmosis, diffusion
3 Proficient
“The Standard.”
... demonstrate no major errors or omissions regarding any of the information and processes that were end of instruction expectations.
  • describe the process of photosynthesis using raw materials (reactants) and the production of wastes (products) in the storage of energy.
  • describe the relationship between photosynthesis and respiration.
  • describe how carbon dioxide and oxygen are needed for photosynthesis and respiration.
  • compare and contrast types of cell transport
Sample Activity:
Lab activities centered around photosynthesis, respiration, osmosis, diffusion, and active transport
Article comparing respiration rate and exercise

4 Advanced
... demonstrate in-depth inferences and applications regarding more complex material that go beyond end of instruction expectations.
  • descriptors

Click Here to view the Proficiency Scale

Resources

Vocabulary

  • photosynthesis
  • glucose
  • chloroplast
  • energy
  • matter
  • respiration
  • products
  • reactants
  • active transport
  • endocytosis
  • exocytosis
  • passive transport
  • osmosis
  • diffusion

Websites

SCI-MS.LS1.07

Life Science Logo7th Grade (SCI) Life Science Standards
[LS1] From Molecules to Organisms: Structures and Processes 

SCI-MS.LS1.07 Develop a model to describe how food is rearranged through chemical reactions forming new molecules that support growth and/or release energy as this matter moves through an organism.

Clarification Statement: Emphasis is on describing that molecules are broken apart and put back together and that in this process, energy is released.
Disciplinary Core Ideas
LS1.C: Organization for Matter and Energy Flow in Organisms Within individual organisms, food moves through a series of chemical reactions in which it is broken down and rearranged to form new molecules, to support growth, or to release energy.
PS3.D: Energy in Chemical Processes and Everyday Life Cellular respiration in plants and animals involve chemical reactions with oxygen that release stored energy. In these processes, complex molecules containing carbon react with oxygen to produce carbon dioxide and other materials (secondary)


Student Learning Targets:

Knowledge Targets

  • I can

Reasoning Targets

  • I can

Skills (Performance) Targets

  • I can

Product Targets

  • I can

Proficiency Scale

The Student can ...
1 Beginning
... with help, demonstrate a partial understanding of some of the simpler details and processes (Score 2.0 content) and some of the more complex ideas and processes (Score 3.0 content).
  • descriptors
2 Developing
... demonstrate no major errors or omissions regarding the simpler details and processes but exhibits major errors or omissions regarding the more complex ideas and processes (Score 3.0 content).
  • descriptors
3 Proficient
“The Standard.”
... demonstrate no major errors or omissions regarding any of the information and processes that were end of instruction expectations.
  • descriptors
4 Advanced
... demonstrate in-depth inferences and applications regarding more complex material that go beyond end of instruction expectations.
  • descriptors

Resources

Vocabulary

  • words
  • list

Websites

  • Title of website with a URL to open in a new window

SCI-MS.LS1.08

MS SCI Targeted Standards

(LS1) From Molecules to Organisms: Structures and Processes

SCI-MS.LS1.08 Gather and synthesize information that sensory receptors respond to stimuli by sending messages to the brain for immediate behavior or storage as memories.

Student Learning Targets:

Knowledge Targets

  • I can
  • I can

Reasoning Targets

  • I can
  • I can

Skills (Performance) Targets

  • I can
  • I can

Product Targets

  • I can
  • I can

Proficiency Scale

Score   Description Sample Activity
4.0 In addition to Score 3.0, the student demonstrates in-depth inferences and applications regarding more complex material that go beyond end of instruction expectations. -
  3.5 In addition to Score 3.0 performance, the student demonstrates in-depth inferences and applications regarding the more complex content with partial success.
3.0 “The Standard.” The student demonstrates no major errors or omissions regarding any of the information and processes that were end of instruction expectations. -
  2.5 The student demonstrates no major errors or omissions regarding the simpler details and processes (Score 2.0 content) and partial knowledge of the more complex ideas and processes (Score 3.0 content).
2.0 The student demonstrates no major errors or omissions regarding the simpler details and processes but exhibits major errors or omissions regarding the more complex ideas and processes (Score 3.0 content). -
  1.5 The student demonstrates partial knowledge of the simpler details and processes (Score 2.0 content) but exhibits major errors or omissions regarding the more complex ideas and procedures (Score 3.0 content).
1.0 With help, the student demonstrates a partial understanding of some of the simpler details and processes (Score 2.0 content) and some of the more complex ideas and processes (Score 3.0 content). -
  0.5 With help, the student demonstrates a partial understanding of some of the simpler details and processes (Score 2.0 content) but not the more complex ideas and processes (Score 3.0 content).
0.0 Even with help, the student demonstrates no understanding or skill. -

Resources

Websites

Vocabulary

MS-LS2

SCI-MS.LS2

BPSS-SCI logo DCI Life Science LS2

Ecosystems: Interactions, Energy, and Dynamics

Performance Expectations

LS2 help student's formulate an answer to the question, “How does a system of living and non-living things operate to meet the needs of the organisms in an ecosystem?”

The LS2 Disciplinary Core Idea is divided into three sub-ideas: Interdependent Relationships in Ecosystems; Cycles of Matter and Energy Transfer in Ecosystems; and Ecosystem Dynamics, Functioning, and Resilience . Students can analyze and interpret data, develop models, and construct arguments and demonstrate a deeper understanding of resources and the cycling of matter and the flow of energy in ecosystems. They can also study patterns of the interactions among organisms within an ecosystem. They consider biotic and abiotic factors in an ecosystem and the effects these factors have on population. They evaluate competing design solutions for maintaining biodiversity and ecosystem services.

Calculation Method for DCI

Disciplinary Core Ideas are larger groups of related Performance Expectations. So the Disciplinary Core Idea Grade is a calculation of all the related Performance Expectations. So click on the Performance Expectation name below each Disciplinary Core Idea to access the learning targets and proficiency scales for each Disciplinary Core Idea's related Performance Expectations.