Page 391 (11 – 14)

11. This equation shows the formation of aluminum oxide, which is found on the surface of aluminum objects exposed to the air:

$$4 \operatorname{Al}(s) + 3 \operatorname{O}_2(g) \rightarrow 2 \operatorname{Al}_2\operatorname{O}_3(s)$$

- a. Write the six mole ratios that can be derived from this equation.
- b. How many moles of aluminum are needed to form 3.7 mol Al₂O₃?
- 12. According to the equation: $4 \operatorname{Al}(s) + 3 \operatorname{O}_2(g) \rightarrow 2 \operatorname{Al}_2\operatorname{O}_3(s)$
 - a. How many moles of oxygen are required to react completely with 14.8 mol Al?
 - b. How many moles of Al_2O_3 are formed with 0.78 mol O_2 reacts with aluminum?

13. Acetylene gas (C₂H₂) is produced by adding water to calcium carbide (CaC₂).

 $CaC_2(s) + 2 H_2O(l) \rightarrow C_2H_2(g) + Ca(OH)_2(aq)$

How many grams of acetylene are produced by adding water to 5.00 g CaC_2 ?

14. Use the equation in question 13 to determine how many moles of CaC_2 are needed to react completely with 49.0 g H₂O.