Page 652 (3, 4, 6, 8, 53, 56, 57, 84, 85, 88, 89)

3. What is the Arrhenius definition of an acid and a base?

4. How are acids and bases defined by the Bronstad-Lowry theory?

6. How are the properties of acids and bases similar? How are they different? (do a quick Google search for similarities and differences between acids and bases)

8. Write a chemical equation for the ionization of HNO_3 in water and for the reaction of CO_3^{2-} with water. Identify the hydrogen-ion donor and the hydrogen-ion acceptor in each equation. Then, label the conjugate acid-base pair in the two equations. (We solve this just like we do our Arrhenius analysis).

53. Classify each compound as an Arrhenius acid or an Arrhenius base:

A. Ca(OH) ₂	C. HNO₃	E. HBr
B. CH₃COOH	D. KOH	F. H ₂ SO ₄

56. Identify each reactant in the following equations as a hydrogen-ion donor (acid) or a hydrogen-ion acceptor (base):

- A. $HNO_3 + H_2O \rightarrow H_3O^+ + NO_3^-$
- B. $CH_3COOH + H_2O \rightarrow H_3O^+ + CH_3COO^-$
- C. $NH_3 + H_2O \rightarrow NH_4^+ + OH^-$
- D. $H_2O + CH_3COO^- \rightarrow CH_3COOH + OH^-$

57. Label the conjugate acid-base pairs for each equation in question 56.

84. Write the formula and name of the conjugate base of each Bronstad-Lowry acid:

Α.	HCO ₃ ⁻	C.	HI
В.	NH_4^+	D.	H_2SO_4

85. Write the formula and name of the conjugate acid of each Bronstad-Lowry base:

A. ClO_2^- C. $H_2PO_4^-$

B. H_2O D. NH_3

88. Use the Bronstad-Lowry and Lewis definitions of acids and bases to identify each **reactant** as an acid or a base:

A. KOH + HBr \rightarrow KBr + H₂O

B. HCl + H₂O \rightarrow Cl⁻ + H₃O⁺

89. Write the formula for the conjugate base of each of the following acids:

A. H_2SO_4 C. H_2O

B. CH₃COOH