Unit 2 – Chapters 8, 9	Name
Assignment #4	Period

- 1) Which of the following statements is/are true? Correct the false statements.
 - a. The molecules SeS₃, SeS₂, PCl₅, TeCl₄, ICl₃, and XeCl₂ all exhibit at least one bond angle which is approximately 120⁰.
 - b. The bond angle in SO_2 should be similar to the bond angle in CS_2 or SCI_2 .
 - c. Of the compounds CF₄, KrF₄, and SeF₄, only SeF₄ exhibits an overall dipole moment (is polar).
 - d. Central atoms in a molecule adopt a geometry of the bonded atoms and lone pairs about the central atom in order to maximize electron repulsions.
- 2) Write electron configurations for
 - a. The cations Mg^{2+} , K^+ , and Al^{3+}
 - b. The anions N^{3-} , O^{2-} , F^- , and Te^{2-}
- 3) Give the hybridization of the central atom in each species below
 - a. CIF2⁻
 - b. SeF₅Br
 - c. SO₃²⁻
 - d. BrO_2^{-}
- 4) What is the hybridization of carbon in:
 - a. CH₃Cl

b.
$$\begin{bmatrix} O-C-O\\ \parallel\\ O\end{bmatrix}^{2-}$$

- 5) Give the number of sigma and pi bonds in each species in question #4.
- 6) Consider vitamin C. Its skeleton structure is

- a. How many sigma and pi bonds are there in vitamin C?
- b. How many unshared electron pairs are there?
- c. What are the approximate values of the angles marked (in blue) 1, 2, and 3?
- d. What is the hybridization of each atom marked (in red) A, B, and C?