UNIT 6 - CHAPTER 11 STUDENT NOTES: SOLUTIONS AND IMFs

Remember: solute - gets dissolved; solvent - does the dissolving; solution - solute + solvent

Expressions of concentration

1.00 grams of ethanol (C_2H_5OH) is dissolved in 100 grams of water (assume the density of the solution is 1 g/mL). Express the concentration of this solution in terms of:

Molarity (M) = moles solute liters of solution

Mass % = mass of solute mass of solution

Mole fraction = mole A mole A + mole B

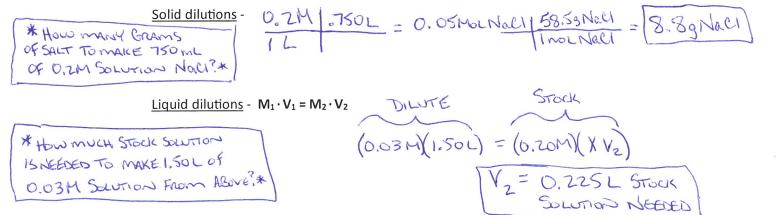
Molality (m) = moles solute kg of solvent

Molality (m) = moles solute liters of solution

Mole fraction = moles solute moles solute kg of solvent

Mole fraction = moles solute liters of solution

Mole fraction = mole A mole B


Mole fraction

EX 1: A 1.5-liter solution of a 4.25 M LiCl₂ solution is produced. If the density of the solution is 1.126 g/mL, calculate the: a) mass %, b) molality, and c) mole fraction of the solution.

EX 2: The electrolyte in automobile lead storage batteries is a 3.75 M sulfuric acid solution that has a density of 1.230 g/mL. Calculate the a) mass %, b) molality, c) mole fraction of the sulfuric acid.

EX 3: Common commercial acids are sold with certain properties. For sulfuric acid they are:
H_2SO_4 density = 1.84 g/cm ³ mass % = 95 $\frac{959 H_2SO_4}{(959 H_2SO_4 + 59 H_2O)}$
Calculate the a) molarity, b) molality, c) mole fraction of the solution.
a) 95% 939 H2204 [1006 H2204 = 69699 MOLH2504 - 9694 MOLH2504 [179]
Calculate the a) molarity, b) molality, c) mole fraction of the solution. (2) 95% 959H2504 1 mol H2504 = 9694 mol H2504 = 9694 mol H2504 = 17.8M
71.849
59 Hz0 = 005 KgHzD = [194 m HzSO4]
5g Hz0 = .005 Kg Hz0
9104 1160
C) -16+1 MOLH 2504 - (076 H2504)
420 = 3 (.9694 now. 42504) (.9694 now) + (.3) = [0.76 H2504]

<u>Dilutions</u> – are problems that require you to produce a certain concentration. They are of two types:

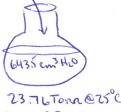
Raoult's Law: describes that the presence of a nonvolatile solute lowers the vapor pressure of a solute.

$$P_{\text{solution}} = X_{\text{solvent}} \cdot P_{\text{solvent}}^0$$

 $X_{solvent}$ = mole fraction of solvent

P⁰_{solvent} = vapor pressure solvent

Equilibrium vapor pressure – pressure of a liquid in equilibrium with its vapor


Boiling liquids are dependent on their equilibrium vapor pressure

Pascal's law - pressure on the surface of a liquid acts

the same throughout the liquid

EX 4: Calculate the vapor pressure at 25°C for a solution prepared by dissolving 158.0 grams of table sugar ($C_{12}H_{22}O_{11} = 342 \text{ g/mole}$) in 643.5 cm³ of water. At 25°C the density of water is 0.9971 g/cm³ and the vapor pressure is 23.76 torr.

1589 C12H2211

PSOLUTION = Xu. P 158g C12H22O11 1 now C12H22O11 = 0.462MOL C12H22O11

643.5cm3 H2010.99719 = 641.6gH201 Inv.H20 = 35.6 mor H20

MOLE FRACTION
$$(X_{H20}) = \frac{35.6 \text{ MoL} H_{20}}{(37.6 \text{ MoL}) + (0.462 \text{ Mag)}} = 0.987$$

PSOLUTION: $(0.987) \cdot (23.76 \text{ TORR}) = \frac{23.45 \text{ TORR}}{(23.76 \text{ TORR})} = \frac{23.45 \text{ TORR}}{(23.76 \text{ TORR})}$

EX 5: A mixture of 10 mL of octane $(C_8H_8$, density = 0.75 g/mL) at a pressure of 150 torr with 15 mL

butane (C₄H₁₀, density = 0.98 g/mL) at a pressure of 100 torr is mixed in a closed container. Calculate the a) vapor pressure of the solution, and b) mole fraction of the two gases in the vapor.

BUTANE -> 15 my 0.983 = 14.7gBurand 1 mcc4H10 = 0.25 mor C4H10

BUTANE > 79,10 TORR = XBUTANE "110,45 TORR

EX 6: Predict the vapor pressure of a solution prepared by mixing 35.0 grams of solid Na₂SO₄ (molar mass = 142 g/mole) with 175 grams of water at 25° C. (Vapor pressure of water @ 25° C = 23.76 torr)

35.09 Naz 504

Colligative properties: are properties determined by the number of particles, not the type or chemistry of the solute.

Boiling point elevation - $\Delta T_b = K_b \cdot m$

*Solute RAISES BP of Solvent BY INCREASING PRESSURE ON BUBBLET K_b = boiling point constant (0.51°C/m for water)

m = molality of solution

Freezing point depression - $\Delta T_f = K_f \cdot m$

 $K_f = \text{freezing pt constant } (1.86^{\circ}\text{C/m for water})$

m = molality of solution

* Solute Lowers F.P OF Solvent m = molalit
BY HINDERING CRYSTAL FORMATION

TABLE 11.5 Molal Boiling-Point Elevation Constants (Kg) and Freezing-Point
Depression Constants (Kg) for Several Solvents

Solvent	Boiling Point (°C)	(°C - kg/mol)	Freezing Point (°C)	K _r (°C · kg/mol)
Water (H ₂ O)	100.0	0.51	0	1.86
Carbon tetrachloride (CCla)	76.5	5.03	-22.99	30.
Chloroform (CHCl ₂)	61.2	3.63	-63.5	4.70
Benzene (C _c H _b)	80.1	2.53	5.5	5.12
Carbon disulfide (CS2)	46.2	2.34	-111.5	3.83
Ethyl ether (C ₄ H ₁₀ O)	34.5	2.02	-116.2	1.79
Camphor (C ₁₀ H ₁₂ O)	208.0	5.95	179.8	40.

Osmotic pressure - $\pi = i \cdot M \cdot R \cdot T$

 π = pressure in atmospheres

i = van't Hoff factor

M = Molarity of solution

R = 0.08206 L-atm/K·mol

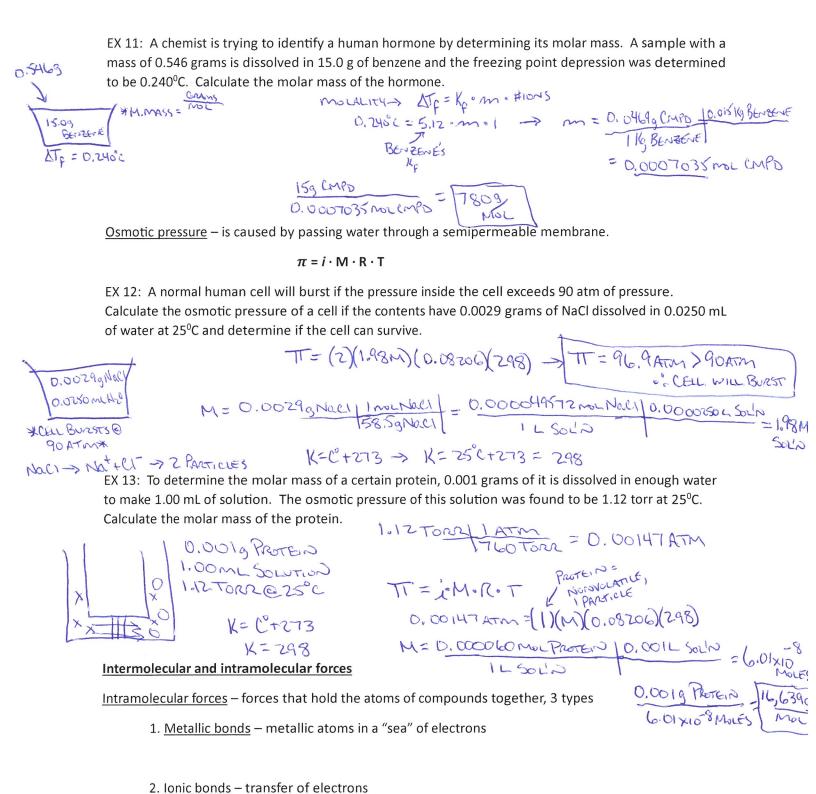
T = Kelvin

EX 7: Calculate the boiling point elevation and freezing point depression of a solution that contains 2.0 grams of sucrose ($C_{12}H_{22}O_{11}$; molar mass = 343 grams) in 100 grams of solution.

The van't Hoff factor (i) – is the effect an ionic solute has on the colligative properties of a solution.

EX 8: Calculate the boiling point elevation and freezing point depression of a solution that contains 2.0 grams of NaCl (molar mass = 58.5 grams) in 100 grams of solution.

EX 9: A solution is prepared by dissolving 18.0 grams of a nonvolatile solute in 150.0 grams of water. The resulting solution was found to have a boiling point of 100.34°C. Calculate the molar mass of glucose.


EX 10: What mass of ethylene glycol ($C_2H_6O_2$; molar mass = 62.1 g/mol), the main component in antifreeze, must be added to 10.0 liters of water to produce a solution for use in a car radiator that freezes at -23.3 $^{\circ}$ C? Assume the water density is 1 g/mL.

ezes at -23.3°C? Assume the water density is $\pm 6, \dots$.

MOLALITY > $\Delta T_{p} = K_{p} \cdot m \cdot \#_{lons}$ *1L=1KgHz0* 1mL=1gHz0 $23.3^{\circ}C=1.86 \cdot m \cdot I$ $m=12.5 \text{ Moles } C_{z}H_{b}O_{z}\text{ Moles } |OKgHz0| = |Z5 \text{ Moles } C_{z}H_{b}O_{z}|$ |Kg|

MOLECULAR,

125 MOLES CZH602 62.1gCzH602 = 7,762.5g CzH602

3. Covalent bonds - sharing of electrons

<u>Intermolecular forces (IMFs)</u> – those forces that hold molecules together.
Two important characteristics of IMFs
1) Boiling point

1.	Lond	lon	dis	persion	<u>forces</u>

Ar

He

2) Vapor pressure

Molecule	State @ room temp	Boiling Point
F – F	Gas	-188°C
Cl – Cl	Gas	-35°C
Br – Br	Liquid	58°C
I – I	Solid	184ºC

2. <u>Dipole-Dipole forces</u>	
СО	Acetone (C₂H ₆ O)

Hydrogen bonding – special dipole-dipole forces

 CH_4

H-F H_2O NH_3

List the intermolecular forces present in CH_3OH , Ar, Ne, CH_3OCH_3 and then rank from lowest to highest boiling point

 C_8H_{18}

H – F, O, N

What determines the strength of the following	forces:
Dipole-Dipole forces	
Hydrogen bonding forces	
London dispersion forces	
Draw a picture of an ion-induced dipole:	
Identify the main type of intermolecular force i	n the following:
Ne	
NH ₃	
KCI	
PH ₃	
BCl ₂	
NaCl in water	
C ₂ H ₆	
Which of the following molecule pairs are NOT i	nvolved in hydrogen bonding?
1) HCOOH, H ₂ O	3) CH₃OH, CH₃COOH
2) H ₂ O, NH ₃	4) H ₂ and I ₂
Which of the following molecules interact prima	
1) SO ₂	3) CH ₂ Cl ₂
2) CCI ₄	4) H ₂ S

Liquid	Gas
Liquid	Gus
the box provided, draw a picture of a water	molecule dissolving a picture of a crystal of NaCl
the box provided, draw a picture of a water	molecule dissolving a picture of a crystal of NaCl
the box provided, draw a picture of a water	molecule dissolving a picture of a crystal of NaCl
the box provided, draw a picture of a water	molecule dissolving a picture of a crystal of NaCl
the box provided, draw a picture of a water	molecule dissolving a picture of a crystal of NaCl
the box provided, draw a picture of a water	molecule dissolving a picture of a crystal of NaCl
the box provided, draw a picture of a water	molecule dissolving a picture of a crystal of NaCl
the box provided, draw a picture of a water	molecule dissolving a picture of a crystal of NaCl