Unit 6 – 0	hapter	11
------------	--------	----

Name _____

Assignment #1

Period _____

- 1) A solution of phosphoric acid was made by dissolving 10.0 g of H_3PO_4 in 100.0 mL of water. The resulting volume was 104 mL. Calculate the items listed below. Assume water has a density of 1.00 g/cm^3 .
 - a. density
 - b. mole fraction
 - c. molarity
 - d. molality
- 2) An aqueous antifreeze solution is 40.0% ethylene glycol ($C_2H_6O_2$) by mass. The density of the solution is 1.05 g/cm³. Calculate the values listed below for the ethylene glycol.
 - a. molality
 - b. molarity
 - c. mole fraction
- 3) Common commercial acids and bases are aqueous solutions with the following properties: Hydrochloric acid (HCl) density $(g/cm^3) = 1.19$; mass percent of solute = 38 Nitric acid (HNO_3) density $(g/cm^3) = 1.42$; mass percent of solute = 70

Calculate the following:

- a. molarity
- b. molality
- c. mole fraction
- 4) A bottle of wine contains 12.5% ethanol by volume. The density of ethanol (C_2H_5OH) is 0.789 g/cm³. Calculate the concentration of ethanol in wine in terms of mass percent and molality.
- 5) Calculate the molarity and mole fraction of acetone in a $1.00 \, m$ solution of acetone (CH₃COCH₃) in ethanol (C₂H₅OH). (Density of acetone = $0.788 \, g/cm^3$; density of ethanol = $0.789 \, g/cm^3$.) Assume that the volumes of acetone and ethanol add.