Unit 6 – Chapter 11	Name
Assignment #3	Period
1) Glycerin, $C_3H_8O_3$, is a nonvolatile liquid. What is the vapor pressure of a	a solution made by adding

- Glycerin, C₃H₈O₃, is a nonvolatile liquid. What is the vapor pressure of a solution made by adding 164 g of glycerin to 338 mL of H₂O at 39.8°C? The vapor pressure of pure water at 39.8°C is 54.75 torr and its density is 0.992 g/cm³.
- 2) A solution of sodium chloride in water has a vapor pressure of 19.6 torr at 25°C. What is the mole fraction of NaCl solute particles in this solution? What would be the vapor pressure of this solution at 45°C? The vapor pressure of pure water is 23.8 torr at 25°C and 71.9 torr at 45°C and assume sodium chloride exists as Na⁺ and Cl⁻ ions in solution.
- A solution is prepared by mixing 0.0300 mol CH₂Cl₂ and 0.0500 mol CH₂Br₂ at 25°C. Assuming the solution is ideal, calculate the composition of the vapor (in terms of mole fractions) at 25°C. At 25°C, the vapor pressures of pure CH₂Cl₂ and pure CH₂Br₂ are 133 and 11.4 torr, respectively.
- 4) A solution is made by mixing 50.0 g acetone (CH₃COCH₃) and 50.0 g methanol (CH₃OH). What is the vapor pressure of this solution at 25^oC? What is the composition of the vapor expressed as a mole fraction? Assume ideal solution and gas behavior. (At 25^oC the vapor pressures of pure acetone and pure methanol are 271 and 143 torr, respectively.) The actual vapor pressure of this solution is 161 torr. Explain any discrepancies.