Intermolecular Forces

The interactions BETWEEN molecules

Q1. Label the diagrams above according to which physical state is represented: gas, solid, or liquid.

Q2. In which physical state(s) are the attractions between the individual particles (atoms or molecules) stronger?

Q3. In which physical state is the attraction between the individual particles (atoms or molecules) weakest?

This activity will be based on the attractions <u>between</u> particles (ions, atoms, molecules). These attractions are called "Intermolecular forces", or "Non-covalent interactions."

Table 1: Types of bonds and their approximate energies

Diagram of the bond (Two groups, A and B)	Type of bond	Approximate bond energy, kJ/mol
Group A + -	Ionic	800
Group A H H H H	Covalent	400

Chem 150 Activity on Intermolecular Forces

Q4. Intermolecular forces are non-covalent interactions between molecules. Which group consists **only** of intermolecular forces, Group A or B?

Q5. List the bonds (Group A) and types of interactions (Group B) in order of increasing strength.

Q6. Which are stronger, Group A bonds or Group B bonds?

- Q7. When you are boiling water, which bonds do you think are breaking:
 - a) covalent bonds between oxygen and hydrogen atoms, or
 - b) intermolecular forces between water molecules

Melting points (mp) and boiling points (bp) are usually good indicators of how strong the intermolecular forces are that exist within a substance.

Table 2: Selected boiling points

Molecule	bp (°C)
CH₄	-161
C₂H ₆	-88
HCI	-80
HF	20
H₂O	100

- Q8. Assign each molecule in Table 2 above as either polar or nonpolar.
- Q9. Complete the following:

The more polar the molecule, the _____ (higher or lower) its bp.

Q10. Complete the following:

The more polar the molecule, the _____ (stronger or weaker) its

intermolecular forces.

Q11. Which do you predict will have a higher bp, CO₂ or CO? Explain.

Table 3: Selected physical properties data

Molecule	bp (°C)	mp (°C)
F₂	-188	-220
Cl ₂	-34	-101.5
Br₂	59	-7.2
l ₂	184	114

Q12. a)Assign each molecule above as solid, liquid, or gas at room temperature (25°C).

b) Based on your answer to Part a, which element in Table 3 must have the strongest intermolecular forces?

Q13. Assign each molecule above as polar or non-polar.

Q14. Is there a relationship between polarity and bp here, as there was in Table 2?

Q15. What is the relationship between molecular weight and boiling point?

Q16. Complete the following:

As the molar mass of a compound increases, the strength of its

intermolecular forces _____ (increases or decreases).

Element	bp (°C)	Compound	bp (°C)
He	-269	CH₄	-161
Ne	-246	C ₂ H ₆	-88
Ar	-186	C₃H ₈	-42
Kr	-152	C₄H ₁₀	0

Q17. Does the statement you completed in the previous question agree also with the data presented in Table 4 above?

Graph 1: Selected

mass

H₂O

CH,

H.S

SiH,

50

100

٥

100

0

Normal Boiling Point

[00]

boiling points vs. molar

T₂Se

GeH.

Molecular mass

100

H₂Te

150

Q18. According to Graph 1 (at right):

a) In which substance are there stronger intermolecular forces, SnH₄, or CH₄?

b) How can you tell based on the graph?

c) Explain based on what you have learned so far why your choice should have stronger intermolecular forces.
(Hint: Think about polarity and/or molar mass) Use one or two complete sentences.

Q19. The bottom line in Graph 1 shows one trend, and the top line in Graph 1 shows a very different trend.

a) Which has stronger intermolecular forces, H₂S or H₂O?

b) Explain why. (Mostly due to polarity OR molar mass?) Use one or two complete sentences.

Q20. We see similar trends with other compounds.

a) Which three compounds deviate from the linear relationship that seems to be present between bp and row number (in Graph 2)?

b) This indicates that the three compounds listed in part a have ______ (stronger or weaker) intermolecular forces than expected.

c) Besides H, which other elements are in these three compounds?

d) Complete the following:

Compounds containing a hydrogen atom bonded to the elements

____, ____, and _____ form very strong intermolecular forces.

These forces are called hydrogen bonds.

e) Are hydrogen bonds the same as covalent bonds between H and another element? (See Table 1).

If not, are hydrogen bonds stronger than covalent bonds? (See Table 1).

Q21. Compare the boiling points of NH₃ and SbH₃ in Graph 2.

a) Which is more polar, NH₃ or SbH₃?

b) Which can hydrogen bond, NH₃ or SbH₃?

c) Based on polarity and hydrogen bonding, which do you expect should have the stronger intermolecular forces?

- d) Which is shown in Graph 2 to have stronger intermolecular forces?
- e) Provide an explanation.

Exercises

This activity is based on sections 9.6 on non-covalent interactions (intermolecular forces). Refer to these sections for additional reading. I also recommend the in-chapter exercises and problem boxes in Sec. 9.6 (p. 409-418) and Questions for Review and Thought (Chapter 9: # 54-62 (bold).

Answer key to this activity will be posted online.

