Unit 7 – Chapter 13 Conclusion questions: Experiment 20	Name
	Period
1. Calculate K_c at 303 K for:	
$SO_{2(g)} + CI_{2(g)} $ \blacksquare $SO_2CI_{2(g)}$	K_p = 34.5 at this temperature

2. The equilibrium constant for the reaction

 $K_p = 1.48 \text{ X } 10^4 \text{ at } 184^{\circ}\text{C}$

- a) Calculate K_{ρ} for the reverse reaction
- b) Does the equilibrium favor the production of NO and O_2 or does it favor NO_2 at this

temperature?

3. A mixture of 1.374 g of H_2 and 70.31 g of Br_2 is heated in a 2.00-liter vessel at 700 K. The substances react as follows:

 $H_{2(g)} + Br_{2(g)} \longleftarrow 2 HBr_{(g)}$

At equilibrium the vessel is found to contain 0.566 g of H_2 .

- a) Calculate the equilibrium concentrations of all the reactants and products
- b) Calculate the value of K_c .

4. At 100°C, K_c for the following reaction is 2.0 X 10⁻⁴

 $2 CO_{(g)} + O_{2(g)}$ $4 \rightarrow 2 CO_{2(g)}$

Calculate the concentrations of all the species at equilibrium for each of the following original mixtures: 2.0 moles of CO, 2.0 mol of O_2 in a 5-liter container.

5. Using the equilibrium equation in #4, calculate the direction the reaction will go at the following concentrations: [CO] = 1.94 M, $[O_2] = 0.78 M$, $[CO_2] = 0.007 M$

6. A mixture of 0.36 M H₂ and 0.30 M Br₂ is heated at 600 K. The equilibrium reaction is:

 $H_{2(g)} + Br_{2(g)} \iff 2 HBr_{(g)} \qquad K_c = 4.2 \times 10^{-5}$

Calculate the equilibrium concentrations of all reactants and products.

7. A mixture of 0.200 moles of CO_2 , 0.100 moles of H_2 , and 0.160 moles of H_2O is placed in a 2.00-liter vessel. The following equilibrium is established at 500 K.

 $CO_{2(g)} + H_{2(g)} \longleftarrow CO_{(g)} + H_2O_{(g)}$

a) Calculate the initial pressures of CO₂, H₂, and H₂O (Hint: Use pV = nRT)

b) At equilibrium P_{H20} = 3.51 atm, calculate the equilibrium partial pressures of CO₂, H₂, and CO.

c) Calculate K_p for the reaction.