Unit 8 – Chapter 14 Assignment #1 Name ______ Period ______ 1) Use Table 14.2 to order the following from the strongest to the weakest base: ClO2⁻, H2O, NH3, ClO4⁻ 2) At 40°C the value of Kw is 2.92 X 10⁻¹⁴.

- a. Calculate the $[H^+]$ and $[OH^-]$ in pure water at $40^{\circ}C$.
- b. What is the pH of pure water at 40° C?
- c. If the hydroxide ion concentration in a solution is 0.10 *M*, what is the pH at 40° C?
- 3) The pOH of a sample of baking soda dissolved in water is 5.74 at 25^oC. Calculate the pH, [H⁺], and [OH⁻] for this sample. Is the solution acidic or basic?
- 4) A solution is prepared by mixing 90.0 mL of 5.00 *M* HCl and 30.0 mL of 8.00 *M* HNO₃. Water is then added until the final volume is 1.00 L. Calculate $[H^+]$, $[OH^-]$, and the pH for this solution.

- 5) For propanoic acid (HC₃H₅O₂, K_a = 1.3 X 10⁻⁵), determine
 - a. the concentration of all species present
 - b. the pH
 - c. the percent dissociation of a 0.100 M solution.

6) A typical aspirin tablet contains 325 mg of acetylsalicylic acid, $HC_9H_7O_4$. Calculate the pH of a solution that is prepared by dissolving two aspirin tablets in one cup (237 mL) of solution. Assume the aspirin tablets are pure acetylsalicylic acid, $K_a = 3.3 \times 10^{-4}$.

- 7) Using the K_a values in Table 14.2, calculate the percent dissociation in a 0.20 *M* solution of each of the following acids.
 - a. Nitric acid (HNO₃)
 - b. Nitrous acid (HNO₂)
 - c. phenol (HOC₆N₅)