Acid Dissociation Constant, K_a

Acetic acid, HC₂H₃O₂, is a weak acid that dissociates according to this equation:

 $HC_2H_3O_2(aq) \rightarrow H^+(aq) + C_2H_3O_2^-(aq)$

In this experiment, you will experimentally determine the dissociation constant, K_a , for acetic acid, starting with solutions of different initial concentrations.

OBJECTIVES

- Gain experience mixing solutions of specified concentration.
- Experimentally determine the dissociation constant, K_{a} , of an acid.
- Investigate the effect of initial solution concentration on the equilibrium constant.

MATERIALS

Chromebook, computer, **or** mobile device Graphical Analysis app Vernier data-collection interface pH Sensor Stir Station and magnetic stirring bar Electrode Support 100 mL beaker 100 mL volumetric flask 2.00 M HC₂H₃O₂ wash bottle distilled water pipets pipet bulb

PRE-LAB

- 1. Write the equilibrium constant expression, K_a , for the dissociation of acetic acid, HC₂H₃O₂. (Use Box 3 in the Data and Calculations table.)
- 2. You have been assigned two different HC₂H₃O₂ solution concentrations by your teacher. Determine the volume, in mL, of 2.00 M HC₂H₃O₂ required to prepare each. (Show your calculations and answers in Space 4 of the Data and Calculations table.)

Figure 1

PROCEDURE

- 1. Obtain and wear safety goggles.
- 2. Connect the pH Sensor to the data-collection interface, and then connect the interface to your Chromebook, computer, or mobile device. Launch Graphical Analysis.
- 3. Put approximately 50 mL of distilled water into a 100 mL volumetric flask.
- 4. Use a pipet bulb (or pipet pump) to pipet the required volume of 2.00 M acetic acid (calculated in Pre-Lab Step 2) into the volumetric flask. **WARNING**: *Acetic acid solution*, CH₃COOH: *Causes skin and eye irritation*. Fill the flask with distilled water to the 100 mL mark. To prevent overshooting the mark, use a wash bottle filled with distilled water for the last few mL. Mix thoroughly.
- 5. Use an Electrode Support to secure the pH Sensor to a Stir Station as shown in Figure 1.
- 6. Determine the pH of your solution as follows:
 - a. Use about 40 mL of distilled water in a 100 mL beaker to rinse the electrode.
 - b. Pour about 30 mL of your solution into a clean 100 mL beaker and use it to thoroughly rinse the electrode.
 - c. Repeat the previous step by rinsing with a second 30 mL portion of your solution.
 - d. Use the remaining 40 mL portion to determine pH. Add a magnetic stirring bar to the solution and adjust the Stir Station so the solution is being stirred vigorously but is not splashing. (**Note**: Readings may drift without proper stirring!) When the reading stabilized, record the pH reading in your data table.
 - e. When done, place the pH Sensor in distilled water.
 - f. Discard the acetic acid solution as directed by your teacher.
- 7. Repeat Steps 3–6 for your second assigned solution.
- 8. When you are finished, rinse the probe with distilled water and return it to the sensor soaking solution.

PROCESSING THE DATA

- 1. Use a scientific calculator to determine the $[H^+]_{eq}$ from the pH values for each solution.
- 2. Use the obtained value for $[H^+]eq$ and the equation:

 $HC_2H_3O_2(aq) \rightarrow H^+(aq) + C_2H_3O_2^-(aq)$

to determine $[C_2H_3O_2^-]_{eq}$ and $[HC_2H_3O_2]_{eq}$.

- 3. Substitute these calculated concentrations into the K_a expression you wrote in Step 1 of the Pre-Lab.
- 4. Compare your results with those of other students. What effect does initial $HC_2H_3O_2$ concentration seem to have on K_a ?

DATA AND CALCULATIONS

1. Assigned concentration	М	М
2. Measured pH		

3. <i>K</i> _s expression		
4. Volume of 2 M acetic acid		
	mL	mL
5. [H⁺] _{eq}		
	М	М
6. [C ₂ H ₃ O ₂ -] _{eq}		
	М	М
7. [HC ₂ H ₃ O ₂] _{eq}		
	М	М
8. <i>K</i> _a calculation		