- 1) A 0.15 M solution of a weak acid is 3.0% dissociated. Calculate K_a .
- 2) The pH of a 1.00 X 10^{-2} M solution of cyanic acid (HOCN) is 2.77 at 25°C. Calculate K_a for the HOCN from this result.
- 3) Use Table 14.3 to help answer the following questions.
 - a. Which is the stronger acid: HClO₄ or C₆H₅NH₃⁺?
 - b. Which is the stronger acid: H₂O or C₆H₅NH₃⁺?
 - c. Which is the stronger acid: C₆H₅NH₃⁺ or CH₃NH₃⁺?
- 4) Calculate [OH-], pOH, and pH for each of the following.
 - a. 0.00040 M Ca(OH)₂
 - b. a solution containing 25 g of KOH per liter
 - c. a solution containing 150.0 g of NaOH per liter
- 5) The K_b values for ammonia and methylamine are 1.8 X 10⁻⁵ and 4.4 X 10⁻⁴, respectively. Which is the stronger acid: NH_4^+ or $CH_3NH_3^+$?
- 6) Calculate the pH of each of the following solutions.
 - a. 0.10 M CH₃NH₃Cl
 - b. 0.050 M NaCN
- 7) Calculate the pH of each of the following solutions.
 - a. 0.12 M KNO₂
 - b. 0.45 M NaOCl
 - c. 0.40 M NH₄ClO₄

8) Are solutions of the following salts acidic, basic, or neutral? For those that are not neutral, write balanced equations for reactions causing the solution to be acidic or basic. The relevant K_a and K_b values are found in Tables 14.2 and 14.3.

a. KCl

d. KF

b. $NH_4C_2H_3O_2$

e. NH₄F

c. CH₃NH₃Cl

f. CH₃NH₃CN