- 1) Calculate the pH after 0.020 mol NaOH is added to 1.00 L of each of the solutions below.
 - a. $0.100 M HONH_2 (K_b = 1.1 \times 10^{-8})$
 - b. 0.100 M HONH₃Cl
 - c. pure H₂O
 - d. a mixture containing 0.100 M HONH₂ and 0.100 M HONH₃Cl
- 2) Calculate the pH of a buffer solution prepared by dissolving 21.46 g of benzoic acid ($HC_7H_5O_2$) and 37.68 g of sodium benzoate in 200.0 mL of solution.
- 3) A buffered solution is made by adding $50.0 \text{ g NH}_4\text{Cl}$ to 1.00 L of a 0.75 M solution of NH_3 . Calculate the pH of the final solution. (Assume no volume change.)
- 4) Calculate the pH after 0.1010 mol gaseous HCl is added to 250.0 mL of each of the following buffered solutions.
 - a. 0.050 M NH₃/0.15 M NH₄Cl
 - b. 0.50 M NH₃/1.50 M NH₄Cl

Do the two original buffered solutions differ in their pH or their capacity? What advantage is there in having a buffer with a greater capacity?

- 5) An aqueous solution contains dissolved $C_6H_5NH_3Cl$ and $C_6H_5NH_2$. The concentration of $C_6H_5NH_2$ is 0.50 M and the pH is 4.20.
 - a. Calculate the concentration of $C_6H_5NH_3^+$ in this buffer solution.
 - b. Calculate the pH after 4.0 g of NaOH $_{(s)}$ is added to 1.0 L of this solution. (Neglect any volume change).