Do the following problems using the Henderson-Hasselbalch equation.

- 1) A buffered solution is made by adding 50.0 grams NH_4Cl to 1.00 L of a 0.75 M solution of NH_3 . Calculate the pH of the final solution.
- 2) Calculate the pH after 0.15 moles solid NaOH is added to 1.00 liters of each of the following buffered solutions.
 - a. 0.050 M propanoic acid (HC₃H₅O₂, K_a = 1.3 X 10⁻⁵) and 0.080 M sodium propanoate (C₃H₅NaO₂)
 - b. 0.50 *M* propanoic acid and 0.80 *M* sodium propanoate.
 - c. Is the solution in part still a buffered solution after the NaOH has been added? Explain.
- 3) A buffer solution contains 0.10 moles of acetic acid ($HC_2H_3O_2$) and 0.13 moles of sodium acetate ($NaC_2H_3O_2$) in 1.00 liters.
 - a. What is the pH of this buffer?
 - b. What is the pH of the buffer after the addition of 0.02 moles of KOH?
 - c. What is the pH of the buffer after the addition of 0.02 moles HNO₃?

- 4) A buffer solution contains 0.12 moles of propanoic acid (HC₃H₅O₂, K_a = 1.3 X 10⁻⁵) and 0.10 moles of sodium propanoate (NaC₃H₅O₂) in 1.50 liters.
 - a. What is the pH of this buffer?
 - b. What is the pH of the buffer after the addition of 0.01 moles of NaOH?
 - c. What is the pH of the buffer after the addition of 0.01 moles of HI?