Unit 10 – Chapter 5: Gas Laws	Name
Practice Problems	Period
	ter instead of Hg, how high would the column of water be if that the density of water is 13.6 times lower than that of
a. 10.3 m b. 3.17 m	c. 20.0 m d. 33.0 m
2. Calculate the pressure, in Pascals,	for a column of Hg that is 2.05 m high.
a. 2.35 X 10 ⁵ Pa	c. 1.56 X 10 ⁶ Pa
b. 2.70 Pa	d. 2.73 X 10 ⁵ Pa
3. What is the pressure, in mm Hg, of	a gas that has a pressure of 15.0 lb/in ² ?
a. 0.113 mm Hg	c. 1.02 mm Hg
b. 776 mm Hg	d. 27.6 mm Hg
pressure is 15.0 torr. Assuming ten change? a. 25:1	e of 300.0 torr rises to a height of 30,000 feet, where the operature remains constant, by what ratio did the volume c. 20:1
b. 1000:1	d. 1.85:1
5. A 0.90-L sample of helium is heate does this sample occupy at 68°C?	d from 68°F to 68°C. At constant pressure, what volume
a. 1.1 L	c. 0.9 L
b. 1.6 L	d. 2.7 L
6. A 3.00-L sample of xenon is heated increased to 120 cm of Hg. What is	I from 100°F to 200°F and an initial pressure of 70.0 cm sthe final volume, in L, of the gas?
a. 1.80 L	c. 3.00 L
b. 2.06 L	d. 6.00 L
7. How many moles of an ideal gas ar 2500 lb/in ² ?	re present in a sample of 1.25 L at 311 K and a pressure of
a. 8.35 mol	c. 32.8 mol
b. 5.10 mol	d. 1.02 mol
8. A 3.25-L sample of a gas at 80.0°C the final temperature of the gas in	is heated until a final volume of 32.5 L is reached. What is Kelvin at constant pressure?
a. 3.53 X 10 ³ K	c. 1.08 X 10 ³ K
b. 151 K	d. 1.34 X 10 ³ K

9. Calculate the number of grams of acetylene, C_2H_2 , in a 30.0 L cylinder at a temperature of

c. 5.52 X 10³ g

d. $2.40 \times 10^3 g$

a. $8.47 \times 10^3 \, g$

b. 1000 g

20.0°C and a pressure equal to 2500 lb/in².

10. The	e average pressure of carbon diox	kide in the atmosphere is 25.1 torr at 273 K. Assuming
tha	it our atmosphere is 50 miles high	n and the temperature and pressure of carbon dioxide
		e mass of the gas in tons. The radius of the earth is 3963.0
mil		
	a. 3.0 X 10 ¹⁵ tons	c. 4.8 X 10 ⁶ tons
	b. 50,000 tons	d. 6.9 X 10 ⁹ tons
		47°C and a pressure of 50.0 atm contains how many
mol	lecules of gas per cm ³ ?	
	a. 5.73 X 10 ²³	c. 2.30 X 10 ¹⁹
	b. 2.30 X 10 ²²	d. 6.75 X 10 ¹⁸
12. A 5	50.0 L cylinder of Cl $_2$ at 20.0 $^{\circ}$ C and	d a pressure of 103,401 torr springs a leak. The following
	•	51 torr. How many moles of chlorine gas escaped during
•	time?	, , , , , , , , , , , , , , , , , , , ,
	a. 170 mol	c. 85.0 mol
	b. 280 mol	d. 113 mol
		produce hydrogen gas and tin (II) chloride. How many
		at 27.0°C and a pressure of 710 torr, if 2.80 g of tin reacts
with	h excess hydrochloric acid?	$\operatorname{Sn}_{(s)} + 2 \operatorname{HCl}_{(aq)} \rightarrow \operatorname{SnCl}_{2(aq)} + \operatorname{H}_{2(g)}$
	a. 0.620 L	c. 2.00 L
	b. 0.320 L	d. 1.25 L
14. Ho	w many cm ³ of carbon tetrachlor	ide are produced when 8.0 L of chlorine are allowed to
	, act with 0.75 L of methane at STP	·
	a. 1500 cm ³	c. 360 cm ³
	b. 750 cm ³	d. 1080 cm^3
_		
	-	after 9.06 g of krypton reacts with 10.0 g of fluorine at
300	0 K in a 10.0 L container.	$Kr_{(g)} + F_{2(g)} \rightarrow KrF_{2(s)}$
	a. 0.591 atm	c. 0.700 atm
	b. 0.384 atm	d. 1.90 atm
16. Cal	culate the density change, g/L, if	700 g of C ₂ H _{6(g)} are removed from a 200. 0 L cylinder at
	0.0 psi (lb/in²) and a temperature	
	a. 3.6 g/L	c. 1.7 g/L
	b. 15.0 g/L	d. 16.2 g/L
	_	•
17. Cal		or dioxide $_{(g)}$ at 37 $^{\circ}$ C and a pressure of 1440 torr.
	a. 6.0 g/L	c. 2.38 g/L
	b. 0.60 g/L	d. 4.76 g/L
18 Cal	culate P. in atms for three differ	ent gases at partial pressures of 144.0 cm, 800.0 mm,
	d 1.3 m of Hg.	2.1. 0.2.2.2. at partial pressures of 1 1 110 only 50010 mm,
ane	a. 1.90 atm	c. 1.06 atm
	h 258 atm	d 4 66 atm

19.	19. 1.0 L of hydrogen gas is collected over water at 308 K at a pressure of 728 torr. How grams of iron are required to react with excess $HCl_{(aq)}$ to produce this volume of hydrogen gas is collected over water at 308 K at a pressure of 728 torr.			
	gas? The vapor pressure of water is 42.4 torr. The products of the reaction are iron (II)			
	chloride and hydrogen gas.			
	a. 4.7 g	c. 2.0 g		
	b. 2.35 g	d. 1.3 g		
20.	20. Gas A diffuses twice as fast as gas B. Gas B has a molecular weight = 60.0 g/mol. What is t			
	molar mass of gas A?			
	a. 15.0 g/mol	c. 30 g/mol		
	b. 120 g/mol	d. 90 g/mol		
21.	21. If gas B effuses four times as fast as gas A, what is the ratio of the molar masses (A/B)?			
	a. 2:1	c. 16:1		
	b. 4:1	d. 8:1		
22.	The rate of effusion of freon-12 to freon-11 i	s 1.07:1. The molar mass of freon-11 is 137.4		
g/mol. Calculate the molar mass, in g/mol, of freon-12.				
	a. 100 g/mol	c. 121 g/mol		
	b. 182 g/mol	d. 118 g/mol		
23.	23. Using the van der Waals equation, calculate the pressure exerted by 10.0 g of methane (CF in a 2.1 L container at 330 K. $a = 2.253 L^3$ atm/mol ² , $b = 0.0458 L/mol$. Calculate using the ideal gas equation and find the difference between the ideal gas pressure and van der Waa			
	pressure.			
	a. 2.0 atm	c. 0.1 atm		
	b. 0.5 atm	d. 1.5 atm		