Unit 12 – Chapter 16: Thermodynamics

Assignment #3

Name _____

Period _____

1) Predict the sign of ΔS^0 for each of the following reactions.

- a. $CCI_{4(l)} + 5 O_{2(q)} \rightarrow CO_{2(q)} + 4 CIO_{2(q)}$
- b. $8 H_2O_{(l)} + S_{8(s)} \rightarrow 8 H_2S_{(g)} + 4 O_{2(g)}$
- c. $Br_{2(I)} \rightarrow Br_{2(s)}$
- d. 2 $NH_{3(g)} \rightarrow N_{2(g)} + 3 H_{2(g)}$

2) Use Table 17.1 to calculate ΔS^{0} for each of the following reactions.

- a. 4 NH_{3(g)} + 7 O_{2(g)} \rightarrow 4 NO_{2(g)} + 6 H₂O_(g)
- b. $2 H_2O_{2(l)} + N_2H_{4(l)} \rightarrow N_{2(g)} + 4 H_2O_{(g)}$
- c. $C_{(s)} + O_{2(g)} \rightarrow CO_{2(g)}$
- d. $CH_{4(g)} + 3 Cl_{2(g)} \rightarrow CHCl_{3(l)} + 3 HCl_{(g)}$
- 3) Calculate ΔG^0 at 45°C for reactions for which
 - a. $\Delta H^0 = 293 \text{ kJ}; \Delta S^0 = -695 \text{ J/K}$
 - b. $\Delta H^0 = -1137 \text{ kJ}; \Delta S^0 = 0.496 \text{ kJ/K}$
 - c. $\Delta H^0 = -86.6 \text{ kJ}; \Delta S^0 = -392 \text{ J/K}$
- 4) It has been proposed that wood alcohol, CH₃OH, a relatively inexpensive fuel to produce, be decomposed to produce methane. Methane is a natural gas commonly used for heating homes. Is the decomposition of wood alcohol to methane and oxygen thermodynamically feasible at 25°C and 1 atm?

5) The reaction between magnesium metal and liquid water produces solid Mg(OH)₂ and hydrogen gas. Calculate ΔG^0 for the formation of one mole of Mg(OH)₂ at 25^oC and at 15^oC.