Unit 12 – Chapter 16: Thermodynamics	Name
Assignment #4	Period

- 1) Discuss the effect of temperature change on the spontaneity of the following reactions at 1 atm.
 - a. $AI_2O_{3(s)} + 2 Fe_{(s)} \rightarrow 2 AI_{(s)} + Fe_2O_{3(s)}$ $\Delta H^0 = +851.5 \text{ kJ}; \Delta S^0 = +38.5 \text{ J/K}$ b. $N_2H_{4(l)} \rightarrow N_{2(g)} + 2 H_{2(g)}$ c. $SO_{3(g)} \rightarrow SO_{2(g)} + \frac{1}{2} O_{2(g)}$ $\Delta H^0 = -50.6 \text{ kJ}; \Delta S^0 = 0.3315 \text{ J/K}$ $\Delta H^0 = 98.9 \text{ kJ}; \Delta S^0 = +0.0939 \text{ J/K}$
- 2) For the reaction: $SnO_{2(s)} + 2CO_{(g)} \rightarrow 2CO_{2(g)} + Sn_{(s)}$ Calculate the temperature at which $\Delta G^0 = 0$.
- 3) For the decomposition for Ag₂O: 2 Ag₂O_(s) \rightarrow 4 Ag_(s) + O_{2(g)}
 - a. Obtain an expression for ΔG^0 as a function of temperature. Prepare a table of ΔG^0 values at 100-K intervals between 100 K and 500 K.
 - b. Calculate the temperature at which ΔG^0 becomes zero.
- 4) Pencil "lead" is almost pure graphite. Graphite is the stable elemental form of carbon at 25°C and 1 atm. Diamond is an allotrope of graphite. Given diamond: $\Delta H^{0}_{f} = 1.9 \text{ kJ/mol}$; S⁰ = 2.4 J/mol · K at what temperature are the two forms in equilibrium at 1 atm? C (graphite) $\leftarrow \leftarrow \leftarrow \leftarrow C$ (diamond)
- 5) Given the following data for bromine, estimate the normal boiling point of bromine.

 $Br_{2(l)} \leftarrow Br_{2(g)}$ $Br_{2(l)}: S^{0} = 152.2 \text{ J/mol} \cdot \text{K}$ Br_{2(*q*)}: $S^0 = 245.4 \text{ J/mol} \cdot \text{K}$ $\Delta H^0_f = 30.91 \text{ kJ/mol}$