Unit 13 – Chapter 12: Kinetics

Problem #33

The rate of the reaction: $NO_{2(g)} + CO_{(g)} \rightarrow NO_{(g)} + CO_{2(g)}$

depends only on the concentration of nitrogen dioxide below 225°C. At a temperature below 225°C, the following data were collected:

Time (s)	[NO ₂] (mol/L)
0	0.500
1.20 X 10 ³	0.444
3.00 X 10 ³	0.381
4.50 X 10 ³	0.341
9.00 X 10 ³	0.250
1.80 X 10 ⁴	0.174

Determine the rate law, the integrated rate law, and the value of the rate constant. Calculate $[NO_2]$ at 2.70 X 10^4 s after the start of the reaction.