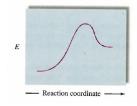
Unit 13 – Chapter 12: Kinetics	Name
Assignment #3	Period

- 1) Write the rate laws for the following elementary reactions.
 - a. $CH_3NC_{(g)} \rightarrow CH_3CN_{(g)}$
 - b. $O_{3(g)} + NO_{(g)} \rightarrow O_{2(g)} + NO_{2(g)}$
 - c. $O_{3(g)} \rightarrow O_{2(g)} + O_{(g)}$

2) The mechanisms shown below have been proposed to explain the kinetics of the reaction considered in the reaction: $2 H_{2(g)} + 2 NO_{(g)} \rightarrow N_{2(g)} + 2 H_2O_{(g)}$ with an observed rate law of Rate = $k[NO]^2[H_2]$. Which of the following are acceptable mechanisms? Explain.


Mechanism I:					
2 H _{2(g)} +	NO _(g)	\rightarrow	N _{2(g)} +	2 H ₂ O _(g)	
Mechanism II:					
$H_{2(g)} +$	NO _(g)	\rightarrow	H ₂ O _(g) +	N _(g)	Slow
$N_{(g)} +$	NO _(g)	\rightarrow	N _{2(g)} +	O _(g)	Fast
$H_{2(g)} +$	O _(g)	\rightarrow	$H_2O_{(g)}$		Fast
Mechanism III:					
$H_{2(g)} +$	2 NO _(g)	\rightarrow	N ₂ O _(g) +	$H_2O_{(g)}$	Slow
$N_2O_{(g)}$	⊢ H _{2(g)}	\rightarrow	$N_{2(g)}$ +	$H_2O_{(g)}$	Fast

3) A proposed mechanism for a reaction is

C_4H_9Br		\rightarrow	$C_4H_9^+$	+	Br⁻	Slow
$C_4H_9^+$	$+ H_2O$	\rightarrow	C₄H ₉ OH ₂ ⁺			Fast
$C_4H_9OH_2$	+ + H ₂ O	\rightarrow	C_4H_9OH	+	$H_3O^{\scriptscriptstyle +}$	Fast

Write the rate law expected for this mechanism. What is the overall balanced equation for the reaction? What are the intermediates in the proposed mechanism?

- 4) For the following reaction profile, indicate:
 - a. the positions of reactants and products.
 - b. the activation energy.
 - c. ΔE for the reaction.

- 5) Draw a rough sketch of the energy profile for each of the following cases:
 - a. $\Delta E = +10 \text{ kJ/mole}, E_a = 25 \text{ kJ/mol}$
 - b. $\Delta E = -10 \text{ kJ/mole}, E_a = 50 \text{ kJ/mol}$
 - c. $\Delta E = -50 \text{ kJ/mole}, E_a = 50 \text{ kJ/mol}$