| 1164 | 1 /  | <b>ADI</b> | Review |
|------|------|------------|--------|
| Unit | 14 — | API        | Keview |

Name \_\_\_\_\_

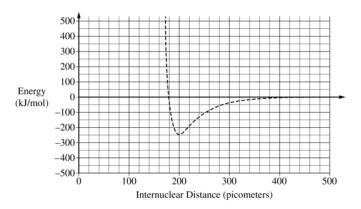
2023 FRQ #2

Period \_\_\_\_\_

2. In the gas phase,  $AlCl_3$  is a molecular substance. A reaction of gaseous  $AlCl_3$  at high temperature is represented by the following balanced equation:

Reaction 1: AlCl<sub>3(g)</sub> 
$$\rightarrow$$
 Al<sub>(g)</sub> + 3 Cl<sub>(g)</sub>  $\Delta H^0_1 = ?$ 

a) How many grams of  $Cl_{(g)}$  can be formed from 1.25 mol of  $AlCl_{3(g)}$ ?


Additional reactions that involve Al or Cl are shown in the following table.

Reaction 1:  $AlCl_3(g) \rightarrow Al(g) + 3Cl(g) \quad \Delta H_1^{\circ} = ?$ 

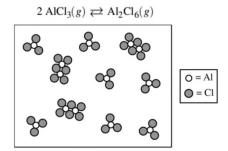
| Reaction Number | Equation                                            | $\Delta H_{rxn}^{\circ} \text{ (kJ/mol}_{rxn})$ |
|-----------------|-----------------------------------------------------|-------------------------------------------------|
| 2               | $Al(s) + \frac{3}{2} Cl_2(g) \rightarrow AlCl_3(g)$ | -583                                            |
| 3               | $Al(s) \to Al(g)$                                   | +326                                            |
| 4               | $\operatorname{Cl}_2(g) \to 2\operatorname{Cl}(g)$  | +243                                            |

b) Calculate the value of  $\Delta H^0_1$ , in kJ/mol<sub>rxn</sub>, for reaction 1 above using reactions 2, 3, and 4.

c) A potential energy diagram for Cl<sub>2</sub> is shown in the following graph.



- (i) Based on the graph, what is the bond length, in picometers, for Cl<sub>2</sub>?
- (ii) A student finds that the average Al Cl bond length is 220 picometers and the average bond energy is 425 kJ/mol. Draw the potential energy curve for the average Al Cl bond on the preceding graph.
- d) Three proposed Lewis diagrams for the  $AlCl_{3(q)}$  molecule are shown.


- (i) The  $AlCl_{3(g)}$  molecule has a trigonal planar geometry. Which diagram (1, 2, or 3) can be eliminated based on geometry? Justify your choice based on VSEPR theory.
- (ii) Which of the three diagrams is the best representation for the bonding in AlCl<sub>3</sub>? Justify your choice based on formal charges.

 $AICl_3$  is known to dimerize reversibly in the gas phase. The dimerization equilibrium is represented by the following equation.

$$2 \operatorname{AlCl}_3(g) \rightleftarrows \operatorname{Al}_2\operatorname{Cl}_6(g)$$

e) Write the expression for the equilibrium constant,  $K_p$ , for this reaction.

A particle-level diagram of an equilibrium mixture of  $AlCl_{3(g)}$  and  $Al_2Cl_{6(g)}$  at  $400^{\circ}C$  in a 25 L closed container is shown.



f) Using the particle-level diagram, calculate the  $K_p$  for the reaction if the total pressure in the container is 22.1 atm.