Unit 14 – AP Review	Name
2023 FRQ #4	Period

4. A student is asked to prepare a buffer solution made with equimolar amounts of $CH_3NH_{2(aq)}$ and $CH_3NH_3CI_{(s)}$. The student uses 25.00 mL of 0.100 *M* $CH_3NH_{2(aq)}$, which contains 0.00250 mol of CH_3NH_2 , to make the buffer.

a) Calculate the mass of $CH_3NH_3CI_{(s)}$ that contains 0.00250 mol of CH_3NH_3CI .

The student has the following materials and equipment available.

Distilled water	Electronic balance	 50 mL beaker 	Pipets
• 0.100 <i>M</i> CH ₃ NH ₂ (<i>aq</i>)	Weighing paper	• 10.0 mL graduated cylinder	• pH meter
Solid CH ₃ NH ₃ Cl	• 50.00 mL buret	Small spatula	

(b) The following table contains a partial procedure for making the buffer solution. Fill in steps 1 and 4 to complete the procedure using only materials and equipment selected from the choices given. (Not all materials listed will be used. Assume that all appropriate safety measures are already in place.)

Step	Procedure
1	
2	Place the solid in the 50 mL beaker.
3	Clean the buret and rinse with distilled water.
4	
5	Use the buret to add 25.00 mL of $0.100 M \text{ CH}_3\text{NH}_2(aq)$ to the beaker.
6	Mix well.
7	Check the pH with the pH meter.

The value of K_b for CH₃NH_{2(aq)} is 4.4 X 10⁻⁴, and the pH of the buffer the student prepared is 10.64.

c) The student prepares a second buffer solution. The student uses 25.00 mL of 0.050 M CH₃NH_{2(aq)} instead of 25.00 mL of 0.100 M CH₃NH_{2(aq)}, and half the mass of CH₃NH₃Cl_(s) that was used in the first buffer. Is the pH of the second buffer greater than, less than, or equal to the pH of the first buffer? Justify your answer.