Unit 4 – Chapter 4	Name
End of chapter practice problems	Period
1. Calculate the molarity of the following solutions:	
a) 49.73 g H_2SO_4 in enough water to make 500 mL of solution.	
b) 5.035 g FeCl₃ in enough water to make 250 mL of solution.	
2. Calculate the molarity of the following solutions:	
a) 21.18 g of Fe(NO₃)₃ in 1 L of water.	
b) 72.06 g of BaCl ₂ in 500 mL of water.	
3. Calculate the concentrations of each of the ions in the following solution	s:
a) 0.25 <i>M</i> Na ₃ PO ₄	
b) 0.87 <i>M</i> Na ₂ CO ₃	
4. Describe how you would prepare the following solutions:	
a) 1 L of 1.5 <i>M</i> KMnO ₄	
b) 250 mL of 0.2 <i>M</i> AgNO₃	
5. Describe how you would prepare the following solutions:	

a) 500 mL of 1.0 M H₂SO₄ from 17.8 M H₂SO₄

b) 1.5 L of 0.25 M KMnO₄ from 1.0 M stock solution.

c) 1.0 L of 0.15 $\it M$ KBrO_3 from solid KBrO_3

- 6. A standard solution of KHP ($C_8H_5O_4K$) was made by dissolving 3.697 g of KHP in enough water to make 100.0 mL of solution. Calculate the KHP concentration.
- 7. A stock solution of sodium hydroxide is prepared by dissolving 120.0 g of NaOH in 500.0 mL of water. What is the molarity of the stock solution?
- 8. How many milliliters of 0.50 M Ca(OH)₂ are required to react with the HCl in 30 mL of a 0.12 M solution? The reaction of interest is:

$$2 \text{ HCl} + \text{Ca}(\text{OH})_2 \rightarrow \text{CaCl}_2 + 2 \text{ H}_2\text{O}$$

- 9. Balance the following reactions:
 - a) $C_3H_8 + O_2 \rightarrow CO_2 + H_2O$
 - b) $Mg_3N_2 + H_2O \rightarrow MgO + NH_3$
- 10. Complete and balance the following reactions:
 - a) NaCl_(aq) + Hg₂(NO₃)_{2(aq)} \rightarrow
 - b) Ca(OH)_{2(aq)} + Na₂CO_{3(aq)} \rightarrow
- 11. Write the molecular, complete ionic, and net ionic equations for the following reactions:
 - a) Aqueous sodium sulfide reacts with aqueous copper (II) nitrate.
 - b) Aqueous hydrogen fluoride reacts with aqueous potassium hydroxide to give water and aqueous potassium fluoride.
- 12. What mass of CaCO₃ is produced when 250 mL of 6.0 M Na₂CO₃ is added to 750 mL of 1.0 M CaF₂?
- 13. What volume of 0.1379 *M* HCl is required to neutralize 10.0 mL of 0.2789 *M* NaOH solution?
- 14. How many mL of 1.50 M NaOH is required to neutralize 275 mL of 0.5 M H₂SO₄?

- 15. Complete and balance each acid-base equation (assume complete neutralization):
 - a) $H_3PO_4 + Mg(OH)_2 \rightarrow$
 - b) $HC_2H_3O_2 + Ba(OH)_2 \rightarrow$
- 16. What volume of 0.2 M NaOH is required to neutralize 50 mL of 0.1 M H₂SO₃?
- 17. A 30.0 mL sample of an unknown basic solution is neutralized after the addition of 12.0 mL of a 0.15 *M* HCl solution. What is the molarity of the monoprotic base?
- 18. Balance the following oxidation-reduction reactions. Identify the oxidizing and agents.

a)
$$Sn^{2+} + Cu^{2+} \rightarrow Sn^{4+} + Cu^{+}$$

b) $Br_2 + SO_2 + H_2O \rightarrow H^+ Br^- + SO_4^{2-}$

19. Balance the following oxidation-reduction reactions taking place in acid solution:

a) H_3AsO_4 + Zn \rightarrow As H_3 + Zn²⁺

- b) $Cr_2O_7^{2-}$ + $Cl^- \rightarrow Cr^{3+} Cl_2$
- 20. Balance the following oxidation-reduction reactions taking place in basic solution:

a) $HXeO_4^-$ + Pb \rightarrow Xe + HPbO₂⁻

b) $Co(OH)_3$ + Sn \rightarrow $Co(OH)_2$ + $HSnO_2^-$