Unit 7 - Chapter 13 Conclusion questions: Experiment 20

Name	
Period	

1. Calculate K_c at 303 K for:

$$SO_{2(g)} + CI_{2(g)}$$
 \triangleleft $SO_2CI_{2(g)}$

 $K_p = 34.5$ at this temperature

2. The equilibrium constant for the reaction

$$2 \text{ NO}_{(g)} + \text{O}_{2(g)} \longrightarrow 2 \text{ NO}_{2(g)}$$

$$K_p = 1.48 \text{ X } 10^4 \text{ at } 184^{\circ}\text{C}$$

a) Calculate
$$K_p$$
 for the reverse reaction $Kp = 6.76 \times 10^{-5}$

b) Does the equilibrium favor the production of NO and O_2 or does it favor NO_2 at this temperature?

3. A mixture of 1.374 g of H_2 and 70.31 g of Br_2 is heated in a 2.00-liter vessel at 700 K. The substances react as follows:

$$H_{2(g)} + Br_{2(g)}$$
 \longrightarrow 2 $HBr_{(g)}$

At equilibrium the vessel is found to contain $0.566\,g$ of H_2 .

- a) Calculate the equilibrium concentrations of all the reactants and products
- b) Calculate the value of K_c .

a)
$$H_2 = .141M$$

 $Br_2 = .020M$
 $HBr = .400M$

4. At 100° C, K_c for the following reaction is 2.0×10^{-4}

$$2 CO_{(g)} + O_{2(g)} \longrightarrow 2 CO_{2(g)}$$

Calculate the concentrations of all the species at equilibrium for each of the following original mixtures: 2.0 moles of CO, 2.0 mol of O_2 in a 5-liter container.

$$[CO] = .396M$$

 $[OZ] = .396M$
 $[COZ] = .003M$

5. Using the equilibrium equation in #4, calculate the direction the reaction will go at the following concentrations: $[CO] = 1.94 \, M$, $[O_2] = 0.78 \, M$, $[CO_2] = 0.007 \, M$

6. A mixture of $0.36\,M\,H_2$ and $0.30\,M\,Br_2$ is heated at $600\,K$. The equilibrium reaction is:

$$H_{2(g)} + Br_{2(g)}$$
 2 $HBr_{(g)}$ $K_c = 4.2 \times 10^{-5}$

Calculate the equilibrium concentrations of all reactants and products.

7. A mixture of 0.200 moles of CO_2 , 0.100 moles of H_2 , and 0.160 moles of H_2O is placed in a 2.00-liter vessel. The following equilibrium is established at 500 K.

$$CO_{2(g)} + H_{2(g)}$$
 \longrightarrow $CO_{(g)} + H_2O_{(g)}$

- a) Calculate the initial pressures of CO_2 , H_2 , and H_2O (Hint: Use pV = nRT)
- b) At equilibrium $P_{H20} = 3.51$ atm, calculate the equilibrium partial pressures of CO₂, H₂, and CO.
- c) Calculate K_p for the reaction.

a)
$$P_{coz} = 4.10 \, \text{ATM}$$
 b) $Co_z = .387 \, \text{ATM}$
 $P_{Hz} = 2.05 \, \text{ATM}$ $H_z = 1.82 \, \text{ATM}$ c) $K_p = .11$
 $P_{Hzo} = 3.28 \, \text{ATM}$ $Co = .23 \, \text{ATM}$
 $H_{zo} (GIVEN) = 3.51 \, \text{ATM}$