Unit 7 – Chapter 13 Assignment #5

Name _____

Period _____

- 1) The concentration of Ag⁺ in a solution saturated with Ag₂C₂O_{4(s)} is 2.2 X 10⁻⁴ *M*. Calculate K_{sp} for Ag₂C₂O₄.
- 2) Calculate the solubility of each of the following compounds in moles/liter.
 - a. PbI_2 , $K_{sp} = 1.4 \times 10^{-8}$
 - b. CdCO₃, $K_{sp} = 5.2 \times 10^{-12}$
 - c. $Sr_3(PO_4)_2$, $K_{sp} = 1.0 \times 10^{-31}$

- 3) Given the Ksp and the equilibrium concentration of one ion, calculate the concentration of the other ion.
 - a. lithium phosphate: $K_{sp} = 3.2 \times 10^{-9}$; $[PO_4^{3-}] = 7.5 \times 10^{-4} M$
 - b. silver nitrate: $K_{sp} = 6.0 \times 10^{-4}$; $[Ag^+] = 0.025 M$
 - c. tin (II) hydroxide: $K_{sp} = 1.4 \times 10^{-28}$; [OH⁻] = 2.2 × 10⁻⁵ M

4) Calculate the molar solubility of Cd(OH)₂, $K_{sp} = 5.9 \times 10^{-11}$

- 5) Cadmium (II) chloride is added to a solution of potassium hydroxide with $[OH^-] = 4.2 \times 10^{-5}$, K_{sp} Cd(OH)₂ = 2.5 X 10⁻¹⁴.
 - a. At what concentration of Cd²⁺ does a precipitate first start to form?
 - b. Enough cadmium (II) chloride is added to make $[Cd^{2+}] = 0.0013 M$. What is the $[OH^{-}]$ of the resulting solution?
 - c. What percentage of the original hydroxide ion is left in solution?

- Before lead in paint was discontinued, lead (II) chromate was a common pigment in yellow paint. A 1.0 liter solution is prepared by mixing 0.50 mg of lead (II) nitrate with 0.020 mg of potassium chromate.
 - a. Will a precipitate form?
 - b. What should $[Pb^{2+}]$ be to just start precipitation?
- 7) A solution is prepared by mixing 35.00 mL of a 0.061 *M* solution of zinc nitrate with 20.0 mL of KOH at 1.0 X 10⁻⁵ *M*. Assume the volumes are additive. Will a precipitate form?

8) Will a precipitate form when 100.0 mL of 4.0 X 10⁻⁴ M Mg(NO₃)₂ is added to 100.0 mL of 2.0 X 10⁻⁴ M NaOH?