Unit 7 – Chapter 13: Chemical Equilibrium		Name
Assignment #1: Equilibrium K _c and K _p Calculations		Period
 A mixture of 0.10 moles of NO, 0.050 moles of H₂, and 0.10 moles of H₂O is placed in a 1.0-liter vessel at 300 K. The following equilibrium is established: 2 NO_(q) + 2 H_{2(q)} → N_{2(q)} + 2 H₂O_(q) 		
At equili	brium, [NO] = 0.062 <i>M</i> .	
	a. Calculate the equilibrium concentrations of H_2 , I	N_2 , and H_2O .
	b. Calculate K_c .	

2) From the following equation:

 $2 \text{ CO}_{(g)} + \text{O}_{2(g)} \iff 2 \text{ CO}_{2(g)}$ $K_c = 1.2 \times 10^{-4}$ Calculate the concentrations of all the species if 0.30 moles of CO and 0.30 moles of O₂ are reacted in a 1.0-liter container.

3) A flask is charged with 1.50 atm of N_2O_4 and 1.00 atm NO_2 at 25°C, and the following equilibrium is achieved:

 $N_2O_{4(g)}$ \checkmark 2 $NO_{2(g)}$ After equilibrium is reached, the partial pressure of NO_2 is 0.512 atm.

- a. What is the equilibrium partial pressure of N_2O_4 ?
- b. Calculate the value of K_p for the reaction.

4) At 2000^oC, the equilibrium constant for the reaction

 $2 \text{ NO}_{(g)} \iff N_{2(g)} + O_{2(g)}$ $K_c = 2.4 \times 10^3$ If the initial concentration of NO is 0.200 *M*, what are the equilibrium concentrations on NO, N₂ and O₂?

5) For the equilibrium:

$$Br_{2(q)} + Cl_{2(q)} \leftarrow 2 BrCl_{(q)}$$

At 400 K, $K_c = 7.0$. If 0.30 mol of Br₂ and 0.30 mol Cl₂ are introduced into a 1.0 L container at 400 K, what will be the equilibrium concentrations of Br₂, Cl₂, and BrCl?

6) At 218°C, $K_c = 1.2 \times 10^{-4}$ for the equilibrium:

 $NH_4HS_{(s)}$ \checkmark $NH_{3(g)}$ + $H_2S_{(g)}$

Calculate the equilibrium concentrations of NH_3 and H_2S if a sample of solid NH_4HS is placed in a closed vessel and decomposes until equilibrium is reached.