Unit 7 – Chapter 13: Chemical Equilibrium

Experiment 20 Conclusion questions

1. Calculate K_c at 303 K for:

$$SO_{2(g)} + CI_{2(g)}$$
 \longrightarrow $SO_2CI_{2(g)}$

 K_p = 34.5 at this temperature

2. The equilibrium constant for the reaction

$$2 \text{ NO}_{(g)} + \text{O}_{2(g)} \longleftrightarrow 2 \text{ NO}_{2(g)}$$

$$K_p = 1.48 \times 10^4 \text{ at } 184^{\circ}\text{C}$$

- a) Calculate K_p for the reverse reaction
- b) Does the equilibrium favor the production of NO and O₂ or does it favor NO₂ at this temperature?

3. A mixture of 1.374 g of H_2 and 70.31 g of Br_2 is heated in a 2.00-liter vessel at 700 K. The substances react as follows:

$$H_{2(g)} + Br_{2(g)}$$
 \longrightarrow 2 $HBr_{(g)}$

At equilibrium the vessel is found to contain 0.566 g of H₂.

- a) Calculate the equilibrium concentrations of all the reactants and products
- b) Calculate the value of K_c .

4. At 100° C, K_c for the following reaction is 2.0 X 10^{-4}

$$2 CO_{(q)} + O_{2(q)} \longrightarrow 2 CO_{2(q)}$$

Calculate the concentrations of all the species at equilibrium for each of the following original mixtures: 2.0 moles of CO, 2.0 mol of O_2 in a 5-liter container.

- 5. Using the equilibrium equation in #4, calculate the direction the reaction will go at the following concentrations: $[CO] = 1.94 \, M$, $[O_2] = 0.78 \, M$, $[CO_2] = 0.007 \, M$
- 6. A mixture of 0.36 M H₂ and 0.30 M Br₂ is heated at 600 K. The equilibrium reaction is:

$$H_{2(q)} + Br_{2(q)} \leftarrow 2 HBr_{(q)}$$
 $K_c = 4.2 \times 10^{-5}$

Calculate the equilibrium concentrations of all reactants and products.

7. A mixture of 0.200 moles of CO_2 , 0.100 moles of H_2 , and 0.160 moles of H_2O is placed in a 2.00-liter vessel. The following equilibrium is established at 500 K.

$$CO_{2(g)} + H_{2(g)}$$
 \longleftarrow $CO_{(g)} + H_2O_{(g)}$

- a) Calculate the initial pressures of CO_2 , H_2 , and H_2O (Hint: Use pV = nRT)
- b) At equilibrium P_{H20} = 3.51 atm, calculate the equilibrium partial pressures of CO₂, H₂, and CO.
- c) Calculate K_p for the reaction.