UNIT 8 - CHAPTER 14 STUDENT NOTES: ACIDS AND BASES

Definitions

Arrhenius acid-base

Acid:

Base:

Bronstad-Lowry

Acid:

Base:

Conjugate acid:

Conjugate base:

EX:
$$HA + H_2O \iff H_3O^+$$

 $HC_{2}H_{3}O_{2} + H_{2}O \iff H_{3}O^{+} + C_{2}H_{3}O_{2}^{-}$ $NH_{3} + H_{2}O \iff NH_{4} + OH^{-}$ $H_{2}S + NH_{3} \iff HS^{-} + NH_{4}^{+}$ $H_{2}O + H_{2}O \iff H_{3}O^{+} + OH^{-}$

→ H₃O⁺ + OH⁻

Acid dissociation constant - is used to determine the strength of an acid.

+ A'

Ka	=	[H ⁺]	[A ⁻]
		[HA]

Weak acids - dissociate incompletely

Page 628 table 14.2 dissociation constants

HCl + H₂O ◀ → H₃O⁺ + Cl⁻

Strong acids are:

HBr, HI, HCI, HNO₃, H₂SO₄, HClO₄

Weak acid dissociation

1

EX 1: The stronger the <u>acid</u>, the weaker the <u>conjugate base</u>. The stronger the <u>base</u>, the weaker the <u>conjugate acid</u>. Arrange the following acids in order of their strength, then arrange the conjugate bases in order of strength.

water is a stronger base than the conjugate base of a strong acid

[H30] IS EQUIVALENT TO [H+]

EX 2: Arrange the following species according to their strengths as bases:

H₂O, F⁻, Cl⁻, NO₂⁻, CN⁻

Amphoteric – sometimes acts like an acid, others a base depending on what it is with

 $H_2O + H_2O \implies H_3O^+ + OH^-$

Formulas

 $K_w = [H_3O^+] \cdot [OH^-] = 1 \times 10^{-14}$ ion product constant

 $pH = - \log [H_3O^+]$ $pOH = - \log [OH^{-}]$ $[H^+] = antilog [-pH]$ $[OH^{-}] = antilog [-pOH]$ EX 3: Calculate the pH of the following strong acids 1x102 (= a) 0.01 MHCI PH= - LOG [00] = 2 1×153 <- b) 0.001 M HNO3 PH = - LOG [.00] -3

IXIOS & C) 1 M H2SO4 PH = -LOGEIJ =

 $[H^{+}] = [OH^{-}] = [XIO^{-}(NEUTRAL)$ $[H^{+}] < [OH^{-}] = BASE$ FHAT > EOH-] = ACID

EX 4: Calculate the pH of the following strong bases $|X_{10}^{-2} \leftarrow a = 0.01 M \text{ NaOH} \times [H^{+}] [ON] = |X_{10}^{-14}$ $|X_{10}^{-3} \leftarrow b = 0.001 M \text{ KOH}$ $|X_{10}^{-3} \leftarrow b = 0.$ a) $pH = 2.2 HCI [H^{+}] = ANTILOG (-PH) \rightarrow ANTILOG (-2.2) = (G, 2×10⁻³ M)$ b) $pH = 9.0 NaOH [H^{+}] = ANTILOG (-PH) \rightarrow ANTILOG (-9.0) = 1×10⁻⁹ M)$ w_{MOLE} f_{MOLE} (f_{MOLE} (here the pH of a 0.100 M aqueous solution of HOCI (hypochlorous acid) $K_a = 3.5 \times 10^{-8}$

EX 11: Calculate the K_a for .100 *M* lactic acid (HC₃H₅O₃) that is 3.7% dissociated.

3)
$$[C_3H_5O_3] = [H^+] = .0037M$$

 $K_0 = (.0037)(.0037)$
 $.100 - .0037$
 $= 1.4 \times 10^{-1}$

Calculating the pH of bases (K_b are listed on page 647)

EX 12: Calculate the pH of a 0.05 M solution of NaOH

PH+POH=14

EX 13: Calculate the pH for a 15 M solution of NH₃

$$K_{b} = 1.8 \times 10^{-5}$$

$$K_{b} = 1.68 \times 10^{-5}$$

Salt - ionic compound, metal-nonmetal combination

There are 3 types of salt solutions to produce pH

1) Salts that produce neutral solutions

Salts that consist of cations (+) - strong bases; anions (-) - strong acids

EX: HCI
$$\rightarrow$$
 H⁺ + CI

$$NaOH \rightarrow Na^+ + OH^-$$

These ions have no effect on the [H⁺] in water

2) Salts that produce basic solutions

Salts that contain anions (-) that are conjugate bases of weak acids

EX: $NaC_2H_3O_2$

Calculate the pH of a 0.100 M solution of NaC₂H₃O₂

3) Salts that produce acidic solutions

Salts that contain cations (+) that are conjugate acids of weak bases.

EX: NH₄CI ← NH₄⁺ + CI⁻

Calculate the pH of 0.100 M solution of NH₄Cl

EX 15: Calculate the pH of a 0.30 M NaF solution

EX 16: Calculate the pH of a 0.500 M NaNO₃ solution

EX 17: Calculate the pH of a 0.30 M C₂H₅NH₃Cl solution C₂H₅NH₃C₁ \rightarrow C₂H₅NH₃⁺ + C₁ $K_{b} = 5 \cdot 6 \times 10^{-4}$ C₂H₅NH₃⁺ \rightarrow C₂H₅NH₂ + H⁺ $K_{a} = 1 \cdot 8 \times 10^{-11} = \frac{(x)(x)}{30 - x} = \frac{2 \cdot 3 \times 10^{-5}}{2 \cdot 32 - 10^{-14}}$ If both ions can contribute to acidity or basicidity have to

If both ions can contribute to acidity or basicidity, how do you determine if the solution is acidic or basic

$K_a > K_b$	pH < 7, acid
$K_a < K_b$	pH > 7, basic
$K_a = K_b$	pH = 7, neutral

Predict whether an aqueous solution of each of the following salts are acid, base, or neutrat $K_0 = K_0$

a)
$$NH_4C_2H_3O_2$$

 $NH_4t = K_0 = 5.6 \times 10^{-10}$
 $C_2H_3O_2 = K_b = 5.6 \times 10^{-10}$
b) NH_4CN $NH_4tCN \rightarrow NH_4t + CN^{-10}$
 $NH_4t = K_0 = 5.6 \times 10^{-10}$
 $NH_4t = K_0 = 5.6 \times 10^{-10}$
 $K_b = 1.6 \times 10^{-5}$
 $CN^{-1}: K_b = (6.2 \times 10^{-10})(K_b) = 1 \times 10^{-14}$
 $K_b = 1.6 \times 10^{-5}$
 $SO = NEUTRAL$

Calculating the pH of polyprotic acids

EX 18: Calculate the pH of a 5.0 M H₃PO₄ solution and the equilibrium [] of the species [H₃PO₄], [H₂PO₄⁻], $[HPO_4^{2-}]$, and $[PO_4^{3-}]$