Unit 8 -	Chapter	14: Acids	&	Bases
----------	---------	-----------	---	--------------

Name					

Assignment #1: Strong to Weak Acid/Bases, pH Calculations, % Dissociations Period ______

1) Use Table 14.2 to order the following from the strongest to the weakest base: ClO_2^- , H_2O , NH_3 , ClO_4^-

- 2) At 40° C the value of K_w is 2.92 X 10^{-14} .
 - a. Calculate the [H⁺] and [OH⁻] in pure water at 40°C.
 - b. What is the pH of pure water at 40°C?
 - c. If the hydroxide ion concentration in a solution is 0.10 M, what is the pH at 40° C?
- 3) The pOH of a sample of baking soda dissolved in water is 5.74 at 25°C. Calculate the pH, [H⁺], and [OH⁻] for this sample. Is the solution acidic or basic?
- 4) A solution is prepared by mixing 90.0 mL of 5.00 *M* HCl and 30.0 mL of 8.00 *M* HNO₃. Water is then added until the final volume is 1.00 L. Calculate [H⁺], [OH⁻], and the pH for this solution.

- 5) For propanoic acid (HC₃H₅O₂, $K_a = 1.3 \times 10^{-5}$), determine
 - a. the concentration of all species present
 - b. the pH
 - c. the percent dissociation of a 0.100 M solution.

6)	A typical aspirin tablet contains 325 mg of acetylsalicylic acid, $HC_9H_7O_4$. Calculate the pH of a solution that is prepared by dissolving two aspirin tablets in one cup (237 mL) of solution. Assume the aspirin tablets are pure acetylsalicylic acid, $K_a = 3.3 \times 10^{-4}$.
7)	Using the K_{σ} values in Table 14.2, calculate the percent dissociation in a 0.20 M solution of each of the following acids. a. Nitric acid (HNO ₃) b. Nitrous acid (HNO ₂) c. phenol (HOC ₆ N ₅)