Unit 9 – Chapter 15: Acid-Base Equilibrium & Buffers

Assignment #9: Chapter Review Problems

- 1) A certain indicator HIn has a pK_a of 3.00 and a color change becomes visible when 7.00% of the indicator has been converted to In. At what pH is this color change visible?
- 2) Which of the indicators in Figure 15.8 could be used for the titrations of 0.200 M acetic acid ($K_a =$ 1.8 X 10⁻⁵) with 0.100 *M* KOH and 0.200 *M* HClO₃ with 0.100 *M* KOH?
- 3) Which of the indicators in Figure 15.8 could be used for the titrations of $0.100 M Ba(OH)_2$ with 0.400 M HCl and 0.100 M H₂NNH₂ with 0.200 M HNO₃?
- 4) Which of the indicators in Figure 15.8 could be used for the titrations of 0.100 M lactic acid $(HC_3H_5O_3, pK_a = 3.86)$ with 0.100 NaOH M and 0.100 M NH₃ $(K_b = 1.8 \times 10^{-5})$ with 0.100 M HCl?
- 5) Which of the indicators in Figure 15.8 could be used for the titrations of 0.100 M propanoic acid $(HC_3H_5O_2, K_a = 1.3 \times 10^{-5})$ with 0.100 M NaOH and 0.100 M pyridine $(K_b = 1.7 \times 10^{-9})$ with 0.100 M HCI?
- 6) Estimate the pH of a solution in which bromocresol green is blue and thymol blue is yellow. (See Figure 15.8)
- 7) A solution has a pH of 7.0. What would be the color of the solution if each of the following indicators were added? (See Figure 15.8)
 - a. thymol blue b. bromothymol blue c. methyl red d. crystal violet
- 8) Write balanced equations for the dissolution reactions and the corresponding solubility product expressions for each of the following solids.

a. $AgC_2H_3O_2$ b. Al(OH)₃ c. $Ca_3(PO_4)_2$

Write balanced equations for the dissolution reactions and the corresponding solubility product expressions for each of the following solids.

> a. Ag_2CO_3 b. $Ce(IO_3)_3$ c. BaF₂

- 10) Use the following data to calculate the K_{sp} value for each solid.
 - a. The solubility of CaC_2O_4 is 6.1 X 10⁻³ g/L.
 - b. The solubility of Bil_3 is 1.32 X 10⁻⁵ mol/L.
- 11) Use the following data to calculate the K_{sp} value for each solid.
 - a. The solubility of $Pb_3(PO_4)_2$ is 6.2 X 10^{-12} mol/L.
 - b. The solubility of Li_2CO_3 is 7.4 X 10⁻² mol/L.
- 12) The concentration of Pb²⁺ in a solution saturated with PbBr_{2(s)} is 2.14 X 10⁻² M. Calculate K_{sp} for PbBr₂.

Name _____

Period _____

- 13) The concentration of Ag⁺ in a solution saturated with Ag₂C₂O_{4(s)} is 2.2 X 10⁻⁴ M. Calculate K_{sp} for Ag₂C₂O₄.
- 14) Calculate the solubility of each of the following compounds in moles per liter. Ignore any acidbase properties.
 - a. Ag₃PO₄, $K_{sp} = 1.8 \times 10^{-18}$
 - b. CaCO₃, $K_{sp} = 8.7 \times 10^{-9}$
 - c. Hg_2Cl_2 , $K_{sp} = 1.1 \times 10^{-18} (Hg_2^{2+} \text{ is the cation in the solution})$
- 15) Calculate the solubility of each of the following compounds in moles per liter. Ignore any acidbase properties.

- c. $Sr_3(PO_4)_2$, $K_{sp} = 1 \times 10^{-31}$
- 16) The solubility of the ionic compound M_2X_3 , having a molar mass of 288 g/mol, is 3.60 X 10⁻⁷ g/L. Calculate the K_{sp} of the compound.
- 17) A solution contains 0.018 mol each of I⁻, Br⁻, and Cl⁻. When the solution is mixed with 200.0 mL of 0.24 *M* AgNO₃, what mass of AgCl_(s) precipitates out, and what is the [Ag⁺]? Assume no volume change.

AgI,
$$K_{sp} = 1.5 \times 10^{-16}$$

AgBr, $K_{sp} = 5.0 \times 10^{-13}$
AgCI, $K_{sp} = 1.6 \times 10^{-10}$

- 18) Calculate the molar solubility of Co(OH)₃, $K_{sp} = 2.5 \times 10^{-43}$.
- 19) Calculate the molar solubility of Cd(OH)₂, $K_{sp} = 5.9 \times 10^{-11}$.
- 20) For each of the following pairs of solids, determine which solid has the smallest molar solubility.
 - a. CaF_{2(s)}, K_{sp} = 4.0 X 10⁻¹¹, or BaF_{2(s)}, K_{sp} = 2.4 X 10⁻⁵
 - b. $Ca_3(PO_4)_{2(s)}$, $K_{sp} = 1.3 \times 10^{-32}$, or $FePO_{4(s)}$, $K_{sp} = 1.0 \times 10^{-22}$
- 21) For each of the following pairs of solids, determine which solid has the smallest molar solubility.
 - a. FeC₂O_{4(s)}, K_{sp} = 2.1 X 10⁻⁷, or Cu(IO₄)_{2(s)}, K_{sp} = 1.4 X 10⁻⁷
 - b. Ag₂CO_{3(s)}, $K_{sp} = 8.1 \times 10^{-12}$, or Mn(OH)_{2(s)}, $K_{sp} = 2 \times 10^{-13}$
- 22) Calculate the solubility (in moles per liter) of Fe(OH)₃ (K_{sp} = 4 X 10⁻³⁸) in each of the following.
 - a. water
 - b. a solution buffered at pH = 5.0
 - c. a solution buffered at pH = 11.0

- 23) The K_{sp} for silver sulfate (Ag₂SO₄) is 1.2 X 10⁻⁵. Calculate the solubility of silver sulfate in each of the following.
 - a. water
 - b. 0.10 *M* AgNO₃
 - c. 0.20 *M* K₂SO₄
- 24) Calculate the solubility of solid Ca₃(PO₄)₂ (K_{sp} = 1.3 X 10⁻³²) in a 0.20 M Na₃PO₄ solution.
- 25) The solubility of Ce(IO₃)₃ in a 0.20 *M* KIO₃ solution is 4.4 X 10⁻⁸ mol/L. Calculate K_{sp} for Ce(IO₃)₃.
- 26) What mass of ZnS (K_{sp} = 2.5 X 10⁻²²) will dissolve in 300.0 mL of 0.050 *M* Zn(NO₃)₂? Ignore the basic properties of S²⁻.