Unit 13 – Chapter 12: Kinetics

Assignment #1: Differential Rate Law

1) Consider the general reaction: $aA + bB \rightarrow cC$ and the following average rate data over some time period Δt :

$$-\frac{\Delta A}{\Delta t} = 0.0080 \text{ mol/L} \cdot \text{s}$$
$$-\frac{\Delta B}{\Delta t} = 0.0120 \text{ mol/L} \cdot \text{s}$$
$$-\frac{\Delta C}{\Delta t} = 0.0160 \text{ mol/L} \cdot \text{s}$$

Determine a set of possible coefficients to balance this general reaction.

2) The reaction: $2 I_{(aq)}^{-} + S_2 O_8^{2^-} (aq) \rightarrow I_{2(aq)} + 2 SO_4^{2^-} (aq)$ was studied at 25° C. The following results were obtained where

[I ⁻] ₀	$[S_2O_8^{2-}]_0$	Initial Rate
(mol/L)	(mol/L)	(mol/L · s)
0.080	0.040	12.5 X 10 ⁻⁶
0.040	0.040	6.25 X 10 ⁻⁶
0.080	0.020	6.25 X 10 ⁻⁶
0.032	0.040	5.00 X 10 ⁻⁶
0.060	0.030	7.00 X 10 ⁻⁶

Rate = $-\frac{\Delta[S_2O_8^{2-}]}{\Delta t}$

- a. Determine the rate law.
- b. Calculate a value for the rate constant for each experiment and an average value for the rate constant.

Name ______ Period ______ 3) The following data were obtained for the gas-phase decomposition of dinitrogen pentoxide,

$2 \text{ N}_2\text{O}_{5(g)} \rightarrow 4 \text{ NO}_{2(g)} + \text{O}_{2(g)}$			
[N ₂ O ₅] ₀	Initial Rate		
(mol/L)	(mol/L · s)		
0.0750	8.90 X 10 ⁻⁴		
0.190	2.26 X 10 ⁻³		
0.275	3.26 X 10 ⁻³		
0.410	4.85 X 10 ⁻³		

Defining the rate as - $\Delta [N_2O_5]$, write the rate law and calculate the value of the rate constant. Δt

4) The following data were obtained for the reaction:

 $2 \operatorname{ClO}_{2(aq)} + 2 \operatorname{OH}_{(aq)}^{-} \rightarrow \operatorname{ClO}_{3(aq)}^{-} + \operatorname{ClO}_{2(aq)}^{-} + \operatorname{H}_{2}\operatorname{O}_{(l)}$

where Rate = - Δ [ClO₂]

Δt

-		
[CIO ₂] ₀	[OH⁻]₀	Initial Rate
(mol/L)	(mol/L)	(mol/L · s)
0.0500	0.100	5.75 X 10 ⁻²
0.100	0.100	2.30 X 10 ⁻¹
0.100	0.0500	1.15 X 10 ⁻¹

- a. Determine the rate law and the value of the rate constant.
- b. What would be the initial rate for an experiment with $[ClO_2]_0 = 0.175 \text{ mol/L}$ and $[OH^-] = 0.0844 \text{ mol/L}?$