Unit 13 – Chapter 12: Kinetics

Assignment #4: MC Review Problems 1-28

_____1. The rate of decomposition of ammonia to hydrogen gas and nitrogen gas is expressed as - Δ [NH₃]/ Δ t. Express the rate of reaction in terms of Δ [H₂]/ Δ t.

 $2 \text{ NH}_{3(g)} \rightarrow \text{N}_{2(g)} + 3 \text{ H}_{2(g)}$

a. Rate = $2/3 \Delta [H_2]/\Delta t$	c. Rate = $3 \Delta [H_2] / \Delta t$
b. Rate = $\Delta[H_2]/\Delta t$	d. Rate = $2 \Delta [H_2] / \Delta t$

_____ 2. Given the following information, calculate the average rate, Δ [SO₂]/ Δ t, between 10 and 40 minutes for the production of SO₂. 2 SO_{3(g)} → 2 SO_{2(g)} + O_{2(g)}

	t (min)	[SO₃]	[SO ₂]	[O ₂]
	0.0	0.124	0.0	0.0
	10.0	0.092	0.032	0.01
	20.0	0.068	0.056	0.028
	30.0	0.050	0.074	0.037
	40.0	0.037	0.087	0.044
	50.0	0.028	0.096	0.048
a.	a. 1.8 X 10 ⁻³ <i>M</i> /min		c. 3.0 X 10-3	³ <i>M</i> /min
b.	b. 1.5 X 10 ⁻³ <i>M</i> /min		d. 3.2 X 10 ⁻	³ <i>M</i> /min

_____ 3. Given the following information, calculate the average rate, Δ [O₂]/ Δ t, between 20 and 40 minutes for the production of O₂. 2 SO_{3(g)} → 2 SO_{2(g)} + O_{2(g)}

	t (min)	[SO₃]	[SO ₂]	[O ₂]
	0.0	0.124	0.0	0.0
	10.0	0.092	0.032	0.01
	20.0	0.068	0.056	0.028
	30.0	0.050	0.074	0.037
	40.0	0.037	0.087	0.044
	50.0	0.028	0.096	0.048
a.	. 8.0 X 10 ⁻³ <i>M</i> /min		c. 6.7 X 10⁻╯	^ı <i>M</i> /min
b.	o. 1.6 X 10⁻³ <i>M</i> /min		d. 8.0 X 10⁻	⁴ <i>M</i> /min

_____ 4. Given the following information, calculate the average rate, -Δ[NH₃]/Δt, between 10 and 30 minutes for the production of NH₃. 2 NH_{3(g)} → N_{2(g)} + 3 H_{2(g)}

	t (min)	[NH₃]	[N ₂]	[H ₂]
	0.0	1.00	0.0	0.0
	10.0	0.083	0.034	0.11
	20.0	0.063	0.044	0.024
	30.0	0.045	0.053	0.036
	40.0	0.033	0.059	0.044
	50.0	0.025	0.063	0.049
8	$0 \times 10^{-3} M/min$	า	c 15X10	⁻² M/min

a. 8.0 X 10⁻³ *M*/min

b. 1.9 X 10⁻³ *M*/min

c. $1.5 \times 10^{-2} M/min$ d. $2.3 \times 10^{-3} M/min$ Name ______ Period _____ _____ 5. Based on the following equation, which one of the following compounds would you expect to undergo the most change in concentration in a certain amount of time?

	$2 \text{ NH}_{3(g)} \rightarrow \text{N}_{2(g)} + 3 \text{ H}_{2(g)}$	
a. Nitrogen	c. Hydrogen	
b. Ammonia	d. None of the molecules	

6. For the following reaction, under circumstances where the reverse reaction can be neglected, the reaction rate will depend on which of the options below? $AlCl_{3(g)} + PH_{3(g)} \rightarrow Cl_3AlPH_{3(g)}$

a.	AICI ₃	c.	PH₃
b.	AICl ₃ and PH ₃	d.	CI_3AIPH_3

_____ 7. For the following rate law: $R = k[X]^3$, what is the order on X?

a.	2	c. 9
b.	4	d. 3

_____8. Based on the following data, determine the rate law of this reaction:

 $SO_{2(g)} + CI_{2(g)} \rightarrow SOCI_2 + CI_2O_{(g)}$

	Experiment	[SO ₂] (<i>M</i>)	[Cl ₂] (<i>M</i>)	Initial rate (M/sec)
	1	0.400	0.400	0.2918
	2	0.400	0.200	0.0730
	3	0.400	0.800	1.1674
	4	0.200	0.800	0.5837
a. $R = k[SO_2]$			c. F	$R = k[Cl_2]$
b. $R = k[SO_2][Cl_2]$			d. I	$R = k[SO_2][CI_2]^2$

9. Based on the following data, determine the rate constant of this reaction:

 $SO_{2(g)} + CI_{2(g)} \rightarrow SOCI_2 + CI_2O_{(g)}$

	Experiment	[SO ₂] (<i>M</i>)	[Cl ₂] (<i>M</i>)	Initial rate (M/sec)
	1	0.400	0.400	0.2918
	2	0.400	0.200	0.0730
	3	0.400	0.800	1.1674
	4	0.200	0.800	0.5837
a. 1.82		c. 4.56		
b. 9.12		d. 0.0351		

10. Based on the following data, determine the rate law of this reaction:

	Experiment	[PO] (<i>M</i>)	[Cl ₂] (<i>M</i>)	Initial rate (M/sec)
	1	0.20	0.20	0.40
	2	0.20	0.40	0.80
	3	0.60	0.20	3.2
	4	0.60	0.60	9.6
3		c. 5/2		
2		d. 4		

 $2 PO_{(g)} + CI_{2(g)} \rightarrow 2 POCI_{(g)}$

_____ 11. Fill in the missing data item in this table:

a. b.

Experiment	[AB] (<i>M</i>)	[CV](<i>M</i>)	Initial rate (M/hr)
1	1.00	0.500	Z
2	1.00	0.750	?
3	2.00	0.750	3.00 Z
4	1.00	0.250	0.500 Z
a. 1.00 Z	c. 2.00 Z		
b. 1.50 Z	d. 1.75 Z		

12. In a zero-order rate expression, what units must the specific rate constant possess?

a. t/ <i>M</i>	c. <i>M</i> /t
b. l/t	d. l/M·t

_____ 13. The rate of decomposition of a substance is first order. If $k = 2.46 \times 10^{-3} \text{ s}^{-1}$, what concentration of this substance remains after 2 minutes, knowing that [Substance]₀ = 0.550 *M*?

a. 0.409 <i>M</i>	c. 0.553 <i>M</i>
b. 0.547 <i>M</i>	d. 0.739 <i>M</i>

_____ 14. A particular drug can be sold until 20% of the original drug has undergone change. Knowing that k = 1.25×10^{-2} /day and the change is first order, how long – in days – will it take before the drug can no longer be sold?

a.	17 days	с.	18 hours
b.	18 days	d.	35 hours

_____ 15. A gas phase reaction in which substance A reacts with substance B to produce AB, is found to be second order on A. Knowing that k = 0.0368 M, what percent of A remains after 177 hours of reaction?

a. 3.31%	c. 14.4%
b. 85.6%	d. 6.39%

_____ 16. The decomposition of N₂O gas obeys zero-order kinetics. Given a rate constant = 2.46 X 10^{-3} *M*/s and [N₂O]₁₂₀ = 0.155 *M*, calculate [N₂O]₀.

a.	0.445 <i>M</i>	c.	0.550 <i>M</i>
b.	0.450 <i>M</i>	d.	0.225 M

_____ 17. The decomposition of N₂O gas obeys zero-order kinetics. Given a rate constant = 2.46 X 10^{-3} *M*/s and [N₂O]₁₂₀ = 0.450 *M*, calculate [N₂O] at the end of 0.0445 hours.

a. 0.0558 <i>M</i>	c. 0.225 <i>M</i>
b. 0.221 <i>M</i>	d. 0.450 <i>M</i>

_____ 18. To determine whether data from different experiments correspond to a zero-order rate expression, a plot of what variables will yield a straight line?

a. [X] vs. l/t	c. I/[X] vs. t
b. [X] vs. t	d. [X] ³ vs. l/t

19. A specific reaction is known to have a first-order rate expression. If $k = 1.52 \times 10^{-2}$ /min, what is the half-life, in minutes, of this reaction?

a.	91.2	c. 33.3
b.	66.7	d. 45.6
20. The foll	owing is a proposed mechanism for t	his reaction: $H_{2(g)} + Br_{2(g)} \rightarrow 2 HBr_{(g)}$
a.	$Br_2 + light \rightarrow 2 Br$	c. H + Br ₂ → HBr + Br
b.	2 Br + 2 H₂ → 2 HBr + 2 H	d. H + HBr \rightarrow H ₂ + Br
e.	$Br + Br \rightarrow Br_2$	
In this pro	posed mechanism, which steps are b	imolecular?
a.	a only	c. All
b.	b, c, d, e	e. b, c, d
21. The foll	owing is a proposed mechanism for t	his reaction: $H_{2(g)} + Br_{2(g)} \rightarrow 2 HBr_{(g)}$
a.	$Br_2 + light \rightarrow 2 Br$	c. H + Br ₂ → HBr + Br
b.	2 Br + 2 H₂ → 2 HBr + 2 H	d. H + HBr → H₂ + Br
e.	$Br + Br \rightarrow Br_2$	
In this pro	posed mechanism, which step consis	ts only of intermediates as reactants?
a.	e only	c. c, d
b.	a only	d. b only
22. For a re	action to take place, the molecules th	hat are reacting:
a.	must have more energy than the pro	ducts.
b.	must have less energy than the prod	ucts.
С.	must be able to reach the activation	energy.
d.	must be in considerable numbers.	
23. Which o	of the following is not a factor determ	ining the energy of activation according to the
Arrhenius equation	n?	
a.	Orientation of molecules	c. Frequency factor
h	Tomporatura	d None of these choices

b. Temperature	d. None of these choices
----------------	--------------------------

_____ 24. Calculate E_a when $k_1 = 2.00$ and $k_2 = 10.0$, $T_1 = 318$ K and $T_2 = 371$ K.

a.	9.0 J	c. 85.0 kJ
b.	30.0 kJ	d. 3.1 J

_ 25. Calculate T_2 when E_a = 30.0 kJ, T_1 = 285 K, k_1 = 3.00, and k_2 = 15.0.

а. 327 К	c. 158 K
b. 253 K	d. 2.53 K

- _____ 26. In a "reaction progress" graph, reacting molecules are most unstable at:
 - a. their initial position. c. right after they collide.
 - b. when they are about to collide. d. at the transition state.
- 27. A catalyst:

- a. is consumed during a reaction, while effectively increasing the number of reacting molecules that can reach the energy of activation.
- b. changes an endothermic reaction into an exothermic reaction.
- c. increases the energy of the products.
- d. provides an alternate pathway to the reaction, effectively lowering E_a.
- 28. In which of the following examples is a heterogenous catalyst NOT used?
 - a. hydrogenation of fats
- c. decomposition of ozone
- d. catalytic converters of car exhaust systems.
- b. oxidation of sulfur dioxide