CHAPTER 17: THERMOCHEMISTRY – HEAT AND CHEMICAL CHANGE

I. Flow of energy-heat

A. energy transformations

- i. thermochemistry heat changes during rxns
- ii. chemical potential energy energy in chem. bonds
- iii. heat (q) energy transfers betw objects due to temp diff
- B. endo/exothermic
 - i. system what you are focused on
 - 1. surroundings are outside system
 - ii. energy never created/destroyed
 - iii. positive q = endothermic, flows into system
 - iv. negative q = exothermic, flows out of system
- C. heat capacity/specific heat
 - i. 1 Calorie = 1000 calories
 - ii. 1 calorie = 4.184 joules (1 Calorie = 4184 joules)
 - iii. calorie = 1 g water $1^{\circ}C$
 - iv. heat capacity just raise substance 1°C
 - v. specific heat (C_p) raise 1 g of substance 1⁰C

vi.
$$q = m X C_p X \Delta t$$
 or $C_p = \frac{q}{m X \Delta t}$

II. Calorimetry

- A. Measuring how much heat (enthalpy) a reaction will take in/give off
- B. solve same as heat, using ΔH instead of q
- C. thermochemical equations
 - 1. EX: CaO + H₂O \rightarrow Ca(OH)₂ + 65.2 kJ
 - a. Exothermic, product
 - b. How much heat given off if you have 32 g of CaO?

i.
$$32 \text{ g CaO}$$
 1 mole CaO 65.2 kJ
56g CaO 1 mole CaO
= 37 kJ

2.
$$CH_4 + 2O_2 \rightarrow CO_2 + 2 H_2O + 890 kJ$$

Is the same as
 $CH_4 + 2O_2 \rightarrow CO_2 + 2 H_2O$ $\Delta H = -890$