Chemistry - Chapter 4 Book assignment #2: Isotopes, average atomic mass calculations

- 1. Boron has two isotopes: boron-10 and boron-11. Which is more abundant, given that the atomic mass of boron is 10.81 amu?
- 2. There are three isotopes of silicon; they have mass numbers of 28, 29, and 30. The atomic mass of silicon is 28.086 amu. Comment on the relative abundance of these three isotopes.
- 3. The element copper has naturally occurring isotopes with mass numbers of 63 and 65. The relative abundance and atomic masses are 69.2% for mass = 62.93 amu, and 30.8% for mass = 64.93 amu. Calculate the atomic mass of copper.
- 4. Calculate the atomic mass of bromine. The two isotopes of bromine have atomic masses and relative abundance of 78.92 amu (50.69%) and 80.92 amu (49.31%).
- 5. What distinguishes the atoms of one element from the atoms of another?
- 6. How do the isotopes of a given element differ from one another?
- 7. How is atomic mass calculated?
- 8. What equation tells you how to calculate the number of neutrons in an atom?
- 9. How is atomic number different from mass number?
- 10. What does the number represent in the isotope platinum-194?
- 11. The atomic masses of elements are generally not whole numbers. Explain why/how this can be.
- 12. Which of argon's three isotopes is most abundant: argon-36, argon-38, or argon-40? The atomic mass of argon is 39.948 amu.
- 13. List the number of protons, neutrons, and electrons in each pair of isotopes:
 - a. ⁶Li³, ⁷Li³
 - b. ⁴²Ca²⁰, ⁴⁴Ca²⁰
 - c. ⁷⁸Se³⁴, ⁸⁰Se³⁴