Unit 4 - Chapter 4: To	ypes of Reactions
------------------------	-------------------

Pre-Lab Questions: Permanganate Determination of the Iron Sample

Period

Redox prelab problems:

1) A solution of permanganate was standardized by titration with oxalic acid (H₂C₂O₄). It required 28.97 mL of the permanganate solution to react completely with 0.1058 grams of oxalic acid. The unbalanced equation for the reaction is:

 $MnO_{4(aq)} + H_2C_2O_{4(aq)} \rightarrow Mn^{2+}_{(aq)} + CO_{2(aq)}$

Calculate the molarity of the permanganate solution.

6H++2Mn04+5H, CzO4 -> 2mn2+8Hz6+10COz 28.97mL 0.10589

0.10589 HzCzO4 | Inz HzCzO4 | Zmor MnO4 = 0.00047 mor MnO4 - 1909 HzCzO4 | 5mor HzCzO4

M= MOL SOLUTE
L SOL'N M= 0.00047 MOL MNOY = 0.01622M MNOY

0.02897L

- 2) A 50.00 mL sample of solution containing Fe²⁺ ions is titrated with a 0.0216 M KMnO₄ solution. It required 20.62 mL of the KMnO₄ solution to oxidize all the Fe²⁺ ions to Fe³⁺ ions by the reaction: $MnO_{4(aq)} + Fe^{2+}_{(aq)} \rightarrow Mn^{2+}_{(aq)} + Fe^{3+}_{(aq)}$ (unbalanced)
 - a. What was the concentration of the Fe²⁺ ions in the sample solution?
 - b. What volume of 0.0150 M K₂Cr₂O₇ solution would it take to do the same titration? The reaction is:

$$Cr_2O_{7^2-(aq)} + Fe^{2+}(aq) \rightarrow Cr^{3+}(aq) + Fe^{3+}(aq)$$

a) $8H^+ + M_NO_4 + 5 Fe^{2+} \rightarrow M_N^{2+} + 4H_2O + 5 Fe^{3+}$
0.0216M 50.00mL
70.62mL

0.0216M = X mol MnO4 > X = 0.000445 HOL KMnO4 5Mol Fert = 0.00223Molfet

6 Fe2+ 14H++ Cr20-2 → 6 Fe3+ + 2 Cr3+ + 7 H20
50.0ML 0.0150M

FRATE A) -> 0.00003Mol

0.00223Molfet | ImolGodit = 0.000372MolGodit

0.0150M Cr2072 = 0.000372Mol [X = 24.8ML]

3) The iron content of iron ore can be determined by titration with standard KMnO₄ solution. The iron ore is dissolved in HCl and all the iron is reduced to Fe^{2+} ions. This solution is then titrated with KMnO₄ solution, producing Fe^{3+} and Mn²⁺ ions in acidic solution. If it required 41.95 mL of 0.0205 *M* KMnO₄ to titrate a solution made from 0.6128 grams of iron ore, what is the mass percent of iron in the iron ore?

8H+ + MnOy + 5 Fe2+ -> Mn2+ + 4H20 + 5 Fe3+ 41.95ML 0,0205M

0.0205 MOLMON 0.04195L = 0.000860 MOLKMON 5MOLFET 0.00430 MOLFET

0.00430mal Fezt | 569 Fezt = 0.249 Fezt

0.24g Fe X100% = 39.2% Fe IN ONE