Assignment #1: Equilibrium K_c and K_p Calculations

1) A mixture of 0.10 moles of NO, 0.050 moles of H_2 , and 0.10 moles of H_2O is placed in a 1.0-liter vessel at 300 K. The following equilibrium is established:

$$2 \text{ NO}_{(g)} + 2 \text{ H}_{2(g)}$$
 \longrightarrow $\text{N}_{2(g)} + 2 \text{ H}_2\text{O}_{(g)}$

At equilibrium, [NO] = 0.062 M.

- a. Calculate the equilibrium concentrations of H₂, N₂, and H₂O.
- b. Calculate K_c .

2) From the following equation:

$$2 CO_{(g)} + O_{2(g)}$$
 \longrightarrow $2 CO_{2(g)}$

$$K_c = 1.2 \times 10^{-4}$$

Calculate the concentrations of all the species if 0.30 moles of CO and 0.30 moles of O_2 are reacted in a 1.0-liter container.

3) A flask is charged with 1.50 atm of N_2O_4 and 1.00 atm NO_2 at 25°C, and the following equilibrium is achieved:

$$N_2O_{4(g)} \longrightarrow 2 NO_{2(g)}$$

After equilibrium is reached, the partial pressure of NO₂ is 0.512 atm.

- a. What is the equilibrium partial pressure of N_2O_4 ?
- b. Calculate the value of K_p for the reaction.

4) At 2000°C, the equilibrium constant for the reaction

$$2 \text{ NO}_{(g)} \longrightarrow \text{N}_{2(g)} + \text{O}_{2(g)}$$

$$K_c = 2.4 \times 10^3$$

If the initial concentration of NO is 0.200 M, what are the equilibrium concentrations on NO, N_2 and O_2 ?

5) For the equilibrium:

$$Br_{2(g)} + Cl_{2(g)} \longrightarrow 2 BrCl_{(g)}$$

At 400 K, $K_c = 7.0$. If 0.30 mol of Br₂ and 0.30 mol Cl₂ are introduced into a 1.0 L container at 400 K, what will be the equilibrium concentrations of Br₂, Cl₂, and BrCl?

6) At 218°C, $K_c = 1.2 \text{ X } 10^{-4} \text{ for the equilibrium:}$

$$NH_4HS_{(s)}$$
 \longleftrightarrow $NH_{3(g)} + H_2S_{(g)}$

Calculate the equilibrium concentrations of NH_3 and H_2S if a sample of solid NH_4HS is placed in a closed vessel and decomposes until equilibrium is reached.