UNIT 11 – CHAPTER 6 STUDENT NOTES: THERMOCHEMISTRY

Calorimetry – Science of measuring heat

Terms

Heat Capacity = heat absorbed/change in temperature

EX 1:

 H_2O

C2H5OH

Add 10 kJ of heat

Add 10 kJ of heat

 $10 - 15^{\circ}C$

 $10 - 22^{\circ}C$

Heat Capacity = $\frac{10k3}{10-15} = \frac{2k3}{2}$

Heat Capacity = 10-221 = 18313

Specific Heat Capacity = heat capacity/gram

 $H_2O = 4.18 \text{ J/g} \cdot {}^{0}C$

Molar Heat Capacity = heat capacity/mole

 $H_2O = 75.2 \text{ J/mol}^{.0}C$

ENTHALPY CHANGE: AH = MOLES CONSUMEN

 $H_2O = 18.0 \text{ cal/mol}^{.0}C$

Heat capacities of common substances

 $H_2O = 4.18 \text{ J/g} \cdot {}^{0}C$

Aluminum = .897 J/g-°C

Iron = $.412 \text{ J/g} \cdot {}^{0}\text{C}$

Carbon dioxide = $.839 \text{ J/g} \cdot {}^{0}\text{C}$

Steel = $.466 \text{ J/g} \cdot ^{0}\text{C}$

Lead = $.129 \text{ J/g}^{.0}\text{C}$

Terms

Work -

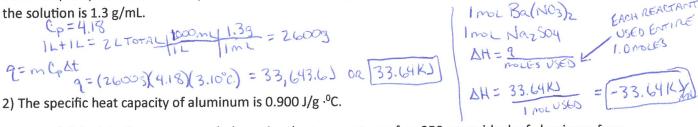
Work = Force X Distance; Pressure X Δ Volume

 $q = m \cdot C_p \cdot \Delta t$ (Joules)

Internal Energy – Sum of work and heat

E = q + w (-) work done by a gas – expansion

(+) work done to a gas - compression


Coffee-cup calorimetry – uses a simple polystyrene cup to measure heat exchange

EX 2: When 1.00 grams of calcium chloride is added to 50.0 grams of water in a coffee-cup calorimeter, it dissolves and the temperature rises from 25.00°C to 28.51°C. Assuming that all the heat given off by the reaction is transferred to the water, calculate the heat for this reaction. (Heat of solution)

Example problems

1) Consider the following reaction: $Ba(NO_3)_{2(aq)} + Na_2SO_{4(aq)} - 2 NaNO_{3(aq)} + BaSO_{4(s)}$

Calculate the enthalpy change if 1.00 liter of each reactant at a concentration of 1.00 M is reacted to form the precipitate and the temperature of the solution goes from 25.0°C to 28.1°C an the density of

- a) Calculate the energy needed to raise the temperature of an 850-gram block of aluminum from 22.8°C to 94.6°C. $9 = 0.000 \times 0.000 \times$
- b) Calculate the molar heat capacity of aluminum.

3) In a coffee-cup calorimeter, 50.0 mL of 0.100 M AgNO₃ and 50.0 mL of 0.100 M HCl are mixed to yield the following reaction: $Ag^{+}_{(aq)} + Cl^{-}_{(aq)} \longrightarrow AgCl_{(s)}$

The two solutions were initially at 22.6°C and the final temperature is 23.4°C. Calculate the heat that accompanies this reaction. Assume that the combined solution has a mass of 100.0 grams and has a specific heat capacity of 4.17 J/g .0C. Calculate the enthalpy change for the reaction in kJ/mol.

Thermochemical equation – a chemical equation that shows the enthalpy relation between products and reactants

EX 3: Consider the following thermochemical equation:

$$^{4_{Po}}_{2}$$
 2 $^{4_{Po}}_{2(g)}$ \rightarrow 2 4 2 2 2 4 2 $^$

a) How much heat is evolved when 4 moles of H2 are ignited?

b) How much heat is evolved when 20.0 grams of H₂0 is produced?

c) How much heat is evolved when 10.0 grams of H₂ and 20.0 grams of O₂ react?

<u>Hess's Law</u> – The change in enthalpy is the same whether the reaction takes place in one step or in a series of steps.

EX 4: Calculate the heat change for the conversion of graphite to diamond using the following information:

EX 5: Diborane (B_2H_6) is a highly reactive boron hydride that was once considered as a possible rocket fuel for the U.S. space program. Calculate the $H_{reaction}$ for the synthesis of diborane.

$$2 B_{(s)} + 3 H_{2(g)} \longleftrightarrow B_{2}H_{6(s)}$$
a) $2 B_{(s)} + 3/2 O_{2(g)} \longleftrightarrow B_{2}O_{3(s)}$

$$AH = -1273 \text{ kJ}$$
b) $B_{2}O_{6(s)} + 3 O_{2(g)} \longleftrightarrow B_{2}O_{3(s)} + 3 H_{2}O_{(g)}$

$$AH = -2035 \text{ kJ}$$
c) $H_{2(g)} + \frac{1}{2} O_{2(g)} \longleftrightarrow H_{2}O_{(g)}$

$$AH = -286 \text{ kJ}$$
d) $H_{2}O_{(g)} \longleftrightarrow H_{2}O_{(g)}$

$$AH = +44 \text{ kJ}$$

$$AH = +3(-1273 \text{ kJ})$$

$$AH = +3(-1273 \text{ kJ})$$

$$AH = -1273 \text{ kJ}$$

$$AH = +44 \text{ kJ}$$

$$AH = +3(-1273 \text{ kJ})$$

$$AH = -1273 \text{ kJ}$$

$$AH = +44 \text{ kJ}$$

$$AH = +3(-1273 \text{ kJ})$$

$$AH = -1273 \text{ kJ}$$

$$AH = +44 \text{ kJ}$$

$$AH = +3(-1273 \text{ kJ})$$

$$AH = -1273 \text{ kJ}$$

$$AH = +44 \text{ kJ}$$

$$AH = +3(-1273 \text{ kJ})$$

$$AH = -1273 \text{ kJ}$$

$$AH = -1286 \text{ kJ}$$

$$AH = -1288 \text{ kJ}$$

$$AH = -1288 \text{ kJ}$$

$$AH = +44 \text{ kJ}$$

$$AH = -1288 \text{ kJ}$$

$$AH =$$

 $2 N_{2(a)} + 5 O_{2(a)} \rightarrow 2 N_2 O_{5(a)}$

Standard Enthalpies of Formation - of a compound is equal to the enthalpy change when one mole of the compound is formed at a constant pressure of 1.0 atm and a fixed temperature, 25°C, from the elements in their states at that pressure and temperature.

- Most enthalpies of formation are negative numbers, meaning that the compound forms from its elements & is exothermic
- Elements in their standard states have a standard enthalpy of formation equal to zero.

In standard enthalpies of formation calculations, keep in mind:

- 1) When a reaction is reversed, the magnitude of all Heats remains the same, but its sign changes.
- 2) When the balanced equation for a reaction is multiplied by an integer, the value of H for that reaction must be multiplied by the same integer.
- 3) Elements in their standard states are not included in the Heat calculated, that is standard heat for an element in its standard state is zero.

$$4 \text{ NH}_{3(g)} + 7 \text{ O}_{2(g)} \rightarrow 4 \text{ NO}_{2(g)} + 6 \text{ H}_2\text{O}_{(g)}$$

THE CUT

OPTIMETRY $4 \text{ NH}_{3(g)} + 7 \text{ O}_{2(g)} \rightarrow 4 \text{ NO}_{2(g)} + 6 \text{ H}_{2}\text{O}_{(f)}$ $\Delta H = ?$ $\Delta H_{f}^{0} + \sqrt{2} = 33.18 \text{ K}$ $\Delta H_{f}^{0} = \Sigma H_{fp} - \Sigma H_{fr}$ $\Delta H_{f}^{0} = \Sigma H_{fp} - \Sigma H_{fr}$ $\Delta H_{f}^{0} = -1397.82 \text{ K}$

EX 8: How much heat is released by 13.3 grams of Al in the equation:

2 Al(s) + Fe₂O_{3(s)} → Al₂O_{3(s)} + 2 Fe(s)

ΔH = -850 kJ

ΔH = -850 kJ

[13.39 Al | Inst Al | -850 kJ

[27.09 Al | 2 mot Al |

Chemical reactions are driven by two factors:

Energy Factor – Many spontaneous reactions proceeded with a decrease of energy

- Almost all exothermic reactions are spontaneous
- Most phase changes are endothermic, yet spontaneous

 $H_2O_{(s)} \rightarrow H_2O_{(l)}$

 $\Delta H = +6.0 \text{ kJ}$

Some reactions, though not spontaneous become spontaneous at higher temperatures.

 $CaCO_{3(s)} \rightarrow CaO_{(s)} + CO_{2(g)}$

 $\Delta H = +178.3 \text{ kJ}$

(at 1100 K, this reaction becomes spontaneous)

Randomness Factor – Nature tends to move spontaneously from a state of lower probability to higher probability.

- Nature tends to move spontaneously from a more ordered to more random state.
- Entropy (S) is the measure of the randomness factor.

$$S = S^0_{final} - S^0_{initial}$$

-S = nonspontaneous; +S = spontaneous

Factors that influence entropy

- A liquid has a higher entropy than a solid from which it is formed.
- A gas has a higher entropy than the liquid from which it is formed.
- Increasing the temperature of a substance increases its entropy (especially in phase changes).

Predict whether the S is positive or negative for each of the following processes.

- 1) taking dry ice from the freezer where the temperature is -80°C and allowing it to warm to room temperature + (Solid \rightarrow GAS = MOST or GANIZED TO MORE RANDOM)
- 2) dissolving bromine in hexane + (MOST ORGANIZED TO MOZE RANDOM)
- 3) condensing gaseous bromine to liquid bromine (Going From More Rawdom To UESS RANDOM)

Calculating ΔS^0 for a reaction

$$\Delta S^0 = \sum S^0_{products} - \sum S^0_{reactants}$$

Calculate the ΔS for each of the following reactions:

A reaction that results in an increase in the number of moles of a gas is accompanied by an increase in entropy; if the gas molecules decrease, entropy is a negative number

Calculate ΔS^0 for

 $C_{c_1}(OH)_2 = 83.4$ $C_{c_2}^{22} = 74.8$ $C_{c_3}^{23} = 34.8$ a) dissolving one mole of calcium hydroxide in water

$$\Delta S^{\circ} = [74.8 + (2 \times 34.8)] - 83.4$$

 $\Delta S^{\circ} = [6]$

b) the combustion of one mole of methane to form carbon dioxide and liquid water

CHy + 202 -> CO2+ ZH20

$$\Delta S = [213.6 + 139.8] - [186.2 + 2(205.0)] = [-242.8 * LESS GAS FORMED]$$

Free Energy (ΔG)

Two quantities affect reaction spontaneity: enthalpy (ΔH) and entropy (ΔS).

Gibbs Free Energy (ΔG) – represents that portion of the total energy change that is available (i.e., free) to do useful work.

- (+) energy must be supplied
- (-) energy is released for work

Gibbs-Helmholtz Equation: ΔG = ΔH - T · ΔS

ΔG (-) reaction is spontaneous Sign determines spontaneity:

 ΔG (+) reaction will not take place

 $\Delta G = 0$ system is at equilibrium

*TEMP MUST BE KELVIN . X *WHEN FINDING DG, DS MUX BE CONVENTED TO KJ *

Two factors tend to make ΔG negative:

- 1) A negative value of ΔH
- 2) A positive value of ΔS (many physical changes, the entropy increase is the major or driving force i.e., melting ice)

Standard Free Energy Change

Standard conditions – gases at 1 atmosphere and solutions 1.0 M and 25°C

 $CaSO_{4(s)} \rightarrow Ca^{2+}_{(aq)} + SO_4^{2-}_{(aq)}$ For the reaction: Calculate a) ΔH° b) ΔS° c) ΔG° at 25°C ΔH° [-543+(-9c9.3)] - [-1433] = -19.3 kΔ LSH -= [TOI] - [05 + 22-]:20 ΔG = ΔH - TOS IN K) → (-19.3) - (2980. 142K) = (-61.6 Calculation of ΔG⁰ at other temperatures than standard

> To a good degree of approximation, the temperature variation for ΔH^0 and ΔS^0 can be neglected. This means that to apply the Gibbs-Helmholtz equation to temperatures other than 25°C, you need only change the value of the temperature.

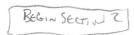
Calculate the ΔG^0 at 230°C for the reaction of one mole of Fe₂O₃ with hydrogen. The products are iron

metal and water vapor. Fe 203 + 3Hz > ZFe+ 3H20(9) ΔH = ((2xFe)+(3xH2)) - [(1xFe203)+3(H2)] - [(2xØ)+(3x-242)] · [(1x-826)+(3xØ)]

DS=[(2x27)+(3x184)]-[(1x40)+(3x131)]

AG= 100-(503K.138K) = 30.6 :

Fezo3 DH = -826 DS = 90 DS = -740 H, OH = D (ELEMENTAL FORM) DG= -229


Calculate the ΔG^0 at 335 K for each reaction below and tell if it is spontaneous or nonspontaneous.

(H₃OH_(I) $\Delta H = -239$ $\Delta G = -166$ $\Delta S = 127$ (H₂(g))

b) $N_{2(q)} + O_{2(q)} \rightarrow 2 NO_{(g)}$

NO(9) AH=90 N2 AH=10 02 AH=10 AG=102 AG=102

a) SHO = [-239] - [(1x = 110,5)+(2x4)]=728,5 K) LSE = [127] - ((1×198)+(2×131)) =-333) Ab335K = -128-(335K . -333K) = -16.4 : SPONTANEOUS

Effect of temperature on spontaneity

	ΔH ⁰	ΔS^0	$\Delta G^0 = \Delta H^0 - T \cdot \Delta S^0$		
1	(-)	(+)	always (-)	Spontaneous at all temps reverse rxn always nonspontaneous	
Ш	(+)	(-)	always (+)	Nonspontaneous at all temperatures	
Ш	(+)	(+)	(+) at low T, (-) at	*If ΔH^0 and ΔS^0 have opposite signs, it is impossible to reverse	
			high T	the direction of spontaneity by a change in temperature. Both	
IV	(-)	(-)	(-) at low T, (+) at	terms ΔH^0 and $T \cdot \Delta S^0$ reinforce each other	
			high T		

Temperature for spontaneity:

 $T = \Delta H^0 / \Delta S^0$

At what temperature does the following reaction occur:

 $H_2O_{(l)} \rightarrow H_2O_{(g)}$

Effect of pressure and temperature

$$G = \Delta G^0 + RT InQ$$

T = degrees Kelvin

 $R = 8.31 \times 10^{-3} \text{ kJ/K}$

Q rules

- 1) gases enter as their partial pressures in atmospheres
- 2) aqueous solutions enter as their molar concentrations

3) pure liquids and solids do not appear

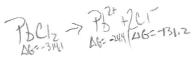
Consider the reaction:

$$\Delta C = \emptyset$$
 $\Delta C = \emptyset$ $\Delta C = \emptyset$

Calculate

a)
$$G^{\circ}$$
 $\Delta G^{\circ} = [(1\times -147.1) + (1\times 0.0)] - [(1\times 0.0)] + (1\times 0.0)] = [-147.1] \times 1/moz$

b) G when $P_{H2} = 750 \text{ mm Hg,} [Zn^{2+}] = 0.10 \text{ M,} [H^+] = 1.0 \text{ X } 10^{-4} \text{ M}$


$$G = \Delta B^{\circ} + RT \ln Q$$

$$= -147.1 + \left[(.00831)(298) \left(\ln \frac{(.10M)}{(10M)} \left(\frac{10M}{1000} \right) \right] + \left[\frac{10M}{1000} \right] + \left[\frac{10M}{1000} \left(\frac{10M}{1000} \right) \right]$$

$$= -147.1 + \left[(.00831)(298) \left(\ln \frac{(.10M)}{(1.0000)^2} \right) \right]$$

$$= -147.1 + 39.9 R.$$

$$= -107.2 K.$$

Show by calculation whether dissolving lead (II) chloride is spontaneous when:

a) $[Pb^{2+}] = 1.0 M$, $[Cl^{-}] = 2.0 M$

a) A60 = [-24.4+(2x-131.2)]-[-314.]=+27.3K) AG= +27.3K) - [(.00831)(298)(ln(1.0).(2.0)2)

AG= +30,7K)

*NONSPONTANEOUS

*NO SOLUBILITY

b) $[Pb^{2+}] = 1.0 \times 10^{-5} M$, $[Cl^{-}] = 2.0 \times 10^{-5} M$

Free energy change and the equilibrium constant,

For spontaneity:

ΔG⁰ must be negative (-)

K must be greater than 1

 ΔE^0 must be (+)

 ΔG^0 and K are related:

Using ΔG^{0}_{f} tables in appendix 1, calculate the solubility product constant, K_{sp} , for PbCl₂ at 25°C.

$$27,400 = (-8.314)(298) lnK$$

 $-11.06 = lnK \rightarrow e^{-11.06}$
 $K = 1.6 \times 10^{-5}$