Assignment #3: ΔS, ΔG Calculations

Period _____

1) Predict the sign of ΔS^0 for each of the following reactions.

a.
$$CCI_{4(l)} + 5 O_{2(q)} \rightarrow CO_{2(q)} + 4 CIO_{2(q)}$$

b.
$$8 H_2O_{(l)} + S_{8(s)} \rightarrow 8 H_2S_{(q)} + 4 O_{2(q)}$$

c.
$$Br_{2(I)} \rightarrow Br_{2(s)}$$

d.
$$2 NH_{3(q)} \rightarrow N_{2(q)} + 3 H_{2(q)}$$

2) Use Table 17.1 to calculate ΔS^0 for each of the following reactions.

a.
$$4 \text{ NH}_{3(g)} + 7 \text{ O}_{2(g)} \rightarrow 4 \text{ NO}_{2(g)} + 6 \text{ H}_2 \text{O}_{(g)}$$

b.
$$2 H_2O_{2(l)} + N_2H_{4(l)} \rightarrow N_{2(g)} + 4 H_2O_{(g)}$$
 (S⁰ for $H_2O_{2(l)} = 190.6 \text{ J/K} \cdot \text{mol}$)

c.
$$C_{(s)} + O_{2(q)} \rightarrow CO_{2(q)}$$

d.
$$CH_{4(q)} + 3 Cl_{2(q)} \rightarrow CHCl_{3(l)} + 3 HCl_{(q)}$$
 (S⁰ for $CHCl_{3(l)} = 201.7 \text{ J/K} \cdot \text{mol}$)

3) Calculate ΔG^0 at 45°C for reactions for which

a.
$$\Delta H^0 = 293 \text{ kJ}; \Delta S^0 = -695 \text{ J/K}$$

b.
$$\Delta H^0 = -1137 \text{ kJ}; \Delta S^0 = 0.496 \text{ kJ/K}$$

c.
$$\Delta H^0 = -86.6 \text{ kJ}; \Delta S^0 = -392 \text{ J/K}$$

4) It has been proposed that wood alcohol, CH₃OH, a relatively inexpensive fuel to produce, be decomposed to produce methane. Methane is a natural gas commonly used for heating homes. Is the decomposition of wood alcohol to methane and oxygen thermodynamically feasible at 25°C and 1 atm?

5) The reaction between magnesium metal and liquid water produces solid Mg(OH)₂ and hydrogen gas. Calculate ΔG^0 for the formation of one mole of Mg(OH)₂ at 25°C and at 15°C.