Assignment #5: Equilibrium Temperature & AG, Spontaneity Predictions

Period _____

1) Organ pipes in unheated churches develop "tin disease", in which white tin is converted to gray tin. Given the below information, calculate the equilibrium temperature for the transition:

White Sn:
$$\Delta H^0_f = 0.00 \text{ kJ/mol}$$
; $S^0 = 51.55 \text{ J/mol} \cdot \text{K}$
Gray Sn: $\Delta H^0_f = -2.09 \text{ kJ/mol}$; $S^0 = 44.14 \text{ J/mol} \cdot \text{K}$

2) Show by calculation whether the reaction is spontaneous at 25°C

$$HC_2H_3O_{2(aq)} \longleftrightarrow H^+_{(aq)} + C_2H_3O_2^-_{(aq)} \quad \Delta G^0 = +27.2 \text{ kJ}$$

- a. When $[H^+] = [C_2H_3O_2^-] = 0.85 M$; $[HC_2H_3O_2] = 0.15 M$
- b. When $[H^+] = [C_2H_3O_2^-] = 2.0 \times 10^{-3} M$; $[HC_2H_3O_2] = 1.0 M$

3) For the reaction:

$$O_{2(g)} + 4 H^{+}_{(aq)} + 4 Fe^{2+}_{(aq)} \rightarrow 2 H_{2}O_{(l)} + 4 Fe^{3+}_{(aq)}$$

- a) Calculate ΔG^0 at 25°C. (G^0 for Fe³⁺ = -4.1 kJ/mol; Fe²⁺ = -78.9)
- b) Calculate ΔG^0 at 25°C when $[Fe^{2+}] = [Fe^{3+}] = 0.250$ M, $P_{O2} = 0.755$ atm, and the pH of the solution is 3.12.
- 4) Consider the reaction:

$$\mathsf{AgCl}_{(s)} \xrightarrow{} \mathsf{Ag^+}_{(aq)} + \mathsf{Cl^-}_{(aq)}$$

- a. Calculate ΔG^0 at 25°C.
- b. What should the concentrations of Ag⁺ and Cl⁻ be so that ΔG^0 = -1.0 kJ (just spontaneous)?

Take
$$[Ag^+] = [Cl^-]$$
.

c. The K_{sp} for AgCl is 1.8 X 10^{-10} . Is the answer to b) above reasonable? Explain.