UNIT 13 - CHAPTER 12 STUDENT NOTES: CHEMICAL KINETICS

<u>Differential Rate Law</u> – the rate law that expresses how the rate depends on concentration

[] vs Rate * Calculated when t = 0

1. From the following equation and information:

[A] <u>。</u>	Initial rate of the reaction (moles/liter·sec)		
0.35	7.20 X 10 ⁻⁴		
0.70	2.90 X 10 ⁻³		
1.05	6.45 X 10 ⁻³		

2. Determine the rate law, solve for the order of the reaction and the value of the rate constant.

Reaction	[C _o]	[D _o]	[E ₀]	Initial rate (moles/liter·sec)
1	0.400	0.300	0.560	7.14 X 10 ⁻⁴
2	0.100	0.500	0.200	4.55 X 10 ⁻⁵
3	0.100	0.200	0.200	4.55 X 10 ⁻⁵
4	0.400	0.300	0.750	1.28 X 10 ⁻³
5	0.100	0.300	0.560	3.57 X 10 ⁻⁴

2062-1084 =(5)

Rate = $K[C]^{x} \cdot [D]^{y} \cdot [E]^{z}$ #[C] = S PATE = 7.14x0⁴ = $K[.400]^{x} \cdot [.300]^{y} \cdot [.500]^{z}$ $3.57 \times 10^{-4} = K[.100]^{x} \cdot [.300]^{y} \cdot [.500]^{z}$ 2 $4 \times = 2 \times = .5$

* 4,55 × 10-5 = K [,100] 5. [,200] . [,200] R= 3,60 × 10-3

3. The reaction between bromate ions and bromide ions in an aqueous solution is given by the equation

$$BrO_{3^{-}(aq)} + 5 Br^{-}_{(aq)} + 6 H^{+}_{(aq)} - 3 Br_{2(l)} + 3 H_{2}O_{(l)}$$

The following table gives the results of 4 experiments

Reaction	[BrO ₃ -]	[Br ⁻]	[H ⁺]	Initial rate (moles/liter·sec)
1	0.10	0.10	0.10	8.0 X 10 ⁻⁴
2	0.20	0.10	0.10	1.6 X 10 ⁻³
3	0.20	0.20	0.10	3.2 X 10 ⁻³
4	0.10	0.10	0.20	3.2 X 10 ⁻³

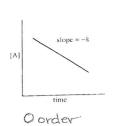
 $\frac{2}{5.5} = \frac{2}{3.2 \times 10^{-3}} = \frac{2}{1.6 \times 10^{-3}} = \frac{2}{1.00} \times \frac{2}{1.00} \times$

RATE = [BrO] X. [Br] Y. [HT] 2

Calculate the rate law and the value of K for this reaction.

TRIAL 1:
$$8.0 \times 10^{-4} = K_{1} = 10^{1} \cdot 10^{1} \cdot 10^{1}$$

[2]


Integrated Rate Law – where the differential rate law expresses rate as a function of reaction

 $\frac{3.2 \times 10^{-3} = K (.10)^{3} \cdot (.10)^{3} \cdot (.10)^{3} \cdot (.10)^{3}}{8.0 \times 10^{-4} = K (.10)^{3} \cdot (.10)^{3} \cdot (.10)^{3} \cdot (.10)^{3}}$ $\frac{4}{[2]^{2}} = 4 [2 = 2]$

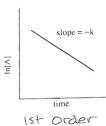
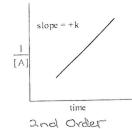

<u>Integrated Rate Law</u> – where the differential rate law expresses rate as a function of reaction concentration at an instant in time (hence an **instantaneous rate**); integrated rates express <u>the reactants and concentration as a function of time</u>.

TABLE 12.6: Summary of the Kinetics for Reactions of the Type aA → Products That Are Zero, First, or Second Order in [A]


	Zeroth Order	First Order	Second Order
Rate Law:	Rate = k	Rate = $k[A]$	Rate = $k[A]^2$
Integrated Rate Law:	$[A] = -kt + [A]_0$	$ln[A] = -kt + ln[A]_0$	$1/[A] = kt + 1/[A]_0$
	000 000	$ln[A] - ln[A]_0 = -kt$	
Plot Needed to Give a	[A] versus t	In[A] versus t	1/[A] versus t
Straight Line:		400	
Relationship of Rate	Slope = $-k$	Slope = -k	Slope = k
Constant to the Slope			
of Straight Line:			
Half-Life:	$t_{1/2} = [A]_0/2k$	$t_{1/2} = 0.693/k$	$t_{1/2} = 1/k[A]_0$

(-) stope

(-) slope

(4) slope

Problems

1. All radioactive elements have nuclei which follow 1st order rate laws when decaying. Radon decays to polonium according to the following equation:

The first order rate constant for decay is 0.181/days. If you begin with a 5.28-gram sample of pure ²²²Rn, how much time will be left after 1.96 days? 3.82 days?

$$1^{st}$$
 order = In ([A]₀/[A] = K · t

$$ln(\frac{5.288}{EA]} = (\frac{181}{DAYS}) \cdot (1.96DAYS)$$

$$= (\frac{5.28}{DAYS}) = (\frac{181}{DAYS}) \cdot (1.96DAYS)$$

$$= (\frac{5.289}{EA]} = (\frac{181}{DAYS}) \cdot (3.82DAYS)$$

$$= (\frac{5.289}{EA]} = (\frac{181}{DAYS}) \cdot (3.82DAYS)$$

$$= (\frac{5.289}{DAYS}) \cdot (\frac{5.289}{DAYS}) \cdot (\frac{5.289}{DAYS}) \cdot (\frac{5.289}{DAYS}) \cdot (\frac{5.289}{DAYS})$$

- 2. A certain 1st order reaction has a half-life of 20.0 minutes.

a) Calculate the rate constant for this reaction.

b) How much time is required for this reaction to be 75% complete?

a) 15 order:
$$t_1 = 0.093 \times 20 \text{ mpc} = 0.693 \times 1000 \times 1$$

- 3. Radioactive copper-64 decays by 1st order kinetics with a half-life of 12.8 days.
 - a) What is the value of K in (sec-1?) ty = 0.693 -> 12.8 DAYS = 0.693 K = 0.054 | DAYS | Z4 HRS | 3600 SEC | 6.3×10-7
 - b) A sample contains 28.0 mg of ⁶⁴Cu. How many decays will be produced in the first second

RATE =
$$K[A]$$

[Cuto] = .0283(u) | mulling 6.02×10²³ Particles of Decay = 2.65×10²⁰ Decays
RATE = $\left(\frac{6.3\times10^{-7}}{5ec}\right)\left(2.65\times10^{20}\text{Particles}\right) = \frac{1.67\times10^{14}\text{ Decays}}{5ec}$

4. A chemist obtains a fresh sample of ⁶⁴Cu and measures its radioactivity. She then determines that to do the experiment she has in mind, the radioactivity cannot go below 3% of the initial measured value. 4 NO LESS THAN 32 REMAINS How long does she have to do the experiment?

$$\ln\left(\frac{100}{3}\right) = \frac{(6.3 \times 10^{-7})}{56000}, t$$

$$\ln\left(\frac{100}{3}\right) = \frac{(0.054)}{54}.t$$

$$\ln\left(\frac{100}{3}\right) = \frac{(0.054)}{54}.t$$

$$\ln\left(\frac{100}{3}\right) = \frac{(0.054)}{54}.t$$

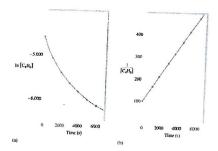
$$\ln\left(\frac{100}{3}\right) = \frac{(0.054)}{54}.t$$

HOW LONG?

5. Butadiene reacts to form its dimer according to the following equation:

- 1) What is the reaction order in $C_4 H_6\,$
- 2) What is the value of the rate constant for the reaction?
- 3) What is the half-life of the reaction under the conditions of this experiment?

Time (± sec)	[C ₄ H ₆] (mol/L)	
0	0.01000	
1000	0.00625	
1800	0.00476	
2800	0.00370	
3600	0.00313	
4400	0.00270	
5200	0.00241	
6200	0.00208	


Answer

1) To decide whether the rate law for this reaction is 1^{st} or 2^{nd} order, we must see whether the plot of $\ln[C_4H_6]$ versus time is a straight line (2^{nd} order). The data necessary to make these plots are as follows:

t (s)	1/[C ₄ H ₆]	In[C ₄ H ₆]		
0	100	-4.605		
1000	160	-5.075		
1800	210	-5.348		
2800	270	-5.599		
3600	320	-5.767		
4400	370	-5.915		
5200	415	-6.028		
6200	481	-6.175		

The resulting plots are shown below. Since the $In[C_4H_6]$ versus t plot (figure a) is not a straight line, the reaction is *not* first order. The reaction is, however **second order**, as shown by the linearity of the $1/[C_4H_6]$ and x = t. Thus the slope of the line can be expressed as follows:

Rate =
$$-\Delta[C_4H_6]/\Delta t = k[C_4H_6]^2$$

2) For a second-order reaction, a plot of $1/[C_4H_6]$ versus t produces a straight line of slope k. In terms of the standard equation for a straight line, y = mx + b, we have $y = 1/[C_4H_6]$ and x = t. Thus the slope of the line can be expressed as follows:

Slope =
$$\Delta y/\Delta x = \Delta(1/[C_4H_6])/\Delta t$$

Using the points at t = 0 and t = 6200, we can find the rate constant for the reaction:

$$k = \text{slope} = (481-100) \text{ L/mol} / (6200 - 0)\text{s} = 381/6200 \text{ L/mol} \cdot \text{s} = 6.14 \text{ X } 10^{-2} \text{ L/mol} \cdot \text{s}$$

3) The expression for the half-life of a second-order reaction is: $t_{1/2} = 1/k[A]_0$ In this case $k = 6.14 \times 10^{-2} \text{ L/mol} \cdot \text{s}$ (from part 2) and $[A]_0 = [C_4H_6]_0 = 0.01000 \text{ M}$ (the

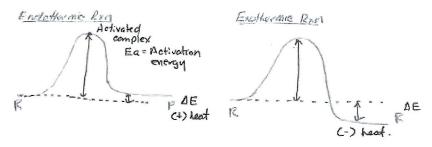
$$t_{1/2} = 1/(6.14 \times 10^{-2} \text{ L/mol} \cdot \text{s})(1.000 \times 10^{-2} \text{ mol/L}) = 1.63 \times 10^{3} \text{ s}$$

Rate Laws: A summary

*There are two types of rate laws.

concentration at t = 0). Thus

- 1. The **differential rate law** (often called simply the **rate law**) shows how the rate of a reaction depends on concentrations.
- 2. The **integrated rate law** shows how the concentrations of species in the reaction depend on time.
- *Because we typically consider reactions only under conditions where the revers reaction is unimportant, our rate laws will involve only concentrations of reactants.
- *Because the differential and integrated rate laws for a given reaction are related in a well-defined way, the experimental determination of *either* of the rate laws is sufficient.
- *Experimental convenience usually dictates which type of rate law is determined experimentally.
- *Knowing the rate law for a reaction is important mainly because we can usually infer the individual steps involved in the reaction from the specific form of the rate law.


A model of chemical kinetics

Facts about rates of chemical reactions

- 1) The more concentrated the reactants, the faster the reaction.
- 2) The higher the temperature, the faster the reaction.

<u>Collision Theory</u> – explains why chemical reactions take place

- 1. Molecules must move toward each other.
- 2. Molecules must hit with proper orientation
- 3. Molecules must hit with sufficient energy.
- 4. Molecules will separate after the reaction occurs.

Activation Energy (Ea) – energy needed to start chemical reactions

$$ln(K) = -E_a (1/T_k) + lnA$$

R = 8.3145 J/K-mol

R

A = frequency factor (different for all reactions)

Activation energy at 2 temperatures

$$In[K_2/K_1] = E_a/R \cdot (1/T_1 - 1/T_2)$$

The gas-phase reaction between methane and diatomic sulfur is given by the equation

$$CH_{4(g)} + 2 S_{2(g)} \rightarrow CS_{2(g)} + 2 H_2S_{(g)}$$

At 550° C the rate constant for this reaction is 1.1 L/mol·sec, and at 625° C the rate constant is 6.4 L/mol·sec. Using these values, calculate E_g for this reaction.

Solution:

The relevant data are shown in the following table:

k (L/mol ·s)	T (°C)	T (K)
$1.1 = k_1$	550	$823 = T_1$
$6.4 = k_2$	625	$898 = T_2$

Substituting these values into the equation gives:

In
$$(6.4/1.1) = (E_a/8.3145 \text{ J/K·mol}) \cdot (1/823 \text{ K} - 1/898 \text{ K})$$

Solving for E_g gives:

$$E_g = [(8.3145) \ln (6.4/1.1)]/(1/823 - 1/898)$$

$$E_g = 1.4 \times 10^5 \text{ J/mol}$$

Reactions Mechanisms - For reaction mechanisms to be plausible:

- 1. The sum of the steps must give the overall reaction.
- 2. The rate law derived from the mechanism must agree with the observed mechanism (from experimental data).

EX 1:

$$2 \text{ NO} + \text{O}_2 \longrightarrow 2 \text{ NO}_2$$
 Rate = $k[\text{NO}]^2$

Elementary step 2
$$N_2O_2 + O_2 \longrightarrow 2 NO_2$$
 Fast

Overall reaction: 2 NO + O2 -> 2 NO2 | INTERMEDIATE | *N202 IS PRODUCED, BUT THEN CONSUMED * - IMPORTANT IN IDENTIFYING MECHANISMS! -

Rate law: NATE = K [NOT

EX 2:

$$NO_2 + CO$$
 NO + CO_2 Rate = $k[NO_2]^2$

Elementary step 1
$$NO_2 + NO_2$$
 NO + NO_3 Slow

Elementary step 2

$$NO_3 + CO$$
 \rightarrow $NO_2 + CO_2$ Fast

Overall reaction:
$$NO_2 + CO \rightarrow NO + CO_2$$

EX 3: $H_2 + 2 \text{ NO} \longrightarrow N_2 + H_2O$ Rate = $k[NO]^2[H_2]$

Is this a plausible mechanism?

Elementary step 1 $H_2 + NO \longrightarrow H_2O + N Slow$

Elementary step 2 $N + NO \longrightarrow N_2 + O$ Fast

 $H_2 + \emptyset$ \longrightarrow H_2O Fas

Overall reaction: $2H_2 + 2NO \rightarrow N_2 + 2H_2O$

Rate law: RATE = K [Hz]. [NO] (NO)

* SLOW STEP (RATE DETERMINING STEP) DOES NOT MATCH UP W/ EXPERIMENTAL DATA

Br+H₂ → HBr+H Slow

Br₂ + ⊬ → HBr + Br Fast

2 Br → Br₂ Fast

Overall reaction: $\mu_z + \beta r_z \rightarrow 2 H \beta r$

Rate law: RATE = K [Brz][Hz]

INTERMEDIATES: H, Br

Br is a <u>CATALYST</u>; INTRODUCED AND REMAINS, BUT NOT PART OF THE REACTION

> EUD OF SECTION 3