Prioritized Standards

MAT-12.AR.04

BPSS-MAT-NO logo 12th Grade (MAT) Targeted Standard  
  (AR) Algebraic Reasoning 
Learners will look for, generate, and make sense of patterns, relationships, and algebraic symbols to represent mathematical models while adopting approaches and solutions in novel situations.
MAT-12.AR.04 Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.
  • Factor a quadratic expression to reveal the zeros of the function it defines.
  • Use the properties of exponents to transform exponential expressions.
  • Complete the square in a quadratic expression to produce an equivalent expression.

proficiency scale iconProficiency Scale

Progressions

Factor Pairs/Multiples
  • MAT-04.AR.OA.04 Find factor pairs and multiples within the range of 1-36 while classifying numbers as prime or composite.
  • MAT-05.AR.OA.04 Find factor pairs and multiples within the range of 1-100 while classifying numbers as prime or composite.
  • MAT-06.NO.O.04 Determine the greatest common factor of two whole numbers less than or equal to 100 and the least common multiple of two whole numbers less than or equal to 12.
  • MAT-09.AR.01 Use the structure of an expression (i.e., quadratic and exponential) to identify ways to rewrite it.
  • MAT-09.AR.F.06 Write a function defined by an expression in different but equivalent forms to reveal and explain the different properties of the function.
  • MAT-09.AR.F.11 Interpret the parameters in a linear, quadratic, or exponential function in context.
  • MAT--12.AR.02 Use the structure of an expression (to extend to polynomial and rational expressions) to identify ways to rewrite it.
  • MAT-12.AR.03 Interpret expressions that represent a quantity in context.
  • MAT-12.AR.04 Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.
  • MAT-12.AR.06 Rewrite simple rational expressions in different forms; write a(x)/b(x) in the form q(x) + r(x)/b(x), where a(x), b(x), q(x), and r(x) are polynomials with the degree of r(x) less than the degree of b(x), using inspection, division, or technology for the more complicated examples.
  • MAT-12.AR.F.03 Write a function defined by an expression in different but equivalent forms to reveal and explain the different properties of the function.
Equivalent Expressions
  • MAT-06.AR.EE.03 Identify when two expressions are equivalent. Apply the properties of operations to generate equivalent expressions.
  • MAT-07.AR.EE.01 Apply the properties of operations as strategies to add, subtract, factor, and expand linear expressions involving variables, integers, and/or non-negative fractions and decimals with an emphasis on writing equivalent expressions.
  • MAT-08.AR.EE.01 Explain the relationship between repeated multiplication and the properties of integer exponents. Apply a single exponent property to generate equivalent numeric and algebraic expressions that include numerical coefficients.
  • MAT-09.NO.02 Perform basic operations on simple radical expressions to write a simplified equivalent expression.
  • MAT-09.AR.01 Use the structure of an expression (i.e., quadratic and exponential) to identify ways to rewrite it.
  • MAT-09.AR.02 Rearrange formulas to isolate a quantity or variable(s) of interest using the same reasoning as in solving equations.
  • MAT-09.AR.07 Rearrange multi-variable formulas to highlight a quantity of interest.
  • MAT-09.AR.F.06 Write a function defined by an expression in different but equivalent forms to reveal and explain the different properties of the function.
  • MAT-12.NO.02 Perform operations on complex radical expressions to write a simplified equivalent expression.
  • MAT-12.AR.01 Rearrange multi-variable formulas to highlight a quantity of interest.
  • MAT-12.AR.02 Use the structure of an expression (to extend to polynomial and rational expressions) to identify ways to rewrite it.
  • MAT-12.AR.04 Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.
  • MAT-12.AR.05 Add, subtract, multiply, and divide rational expressions. Understand that rational expressions form a system analogous to rational numbers, closed under addition, subtraction, multiplication, and division by a nonzero rational expression.
  • MAT-12.AR.F.03 Write a function defined by an expression in different but equivalent forms to reveal and explain the different properties of the function.
  • MAT-12.GM.01 Write the equation of a conic section given its special features. Convert between the standard form and general form equations of conic sections.
  • MAT-12.GM.02 Identify key features of a conic section given its equation. Apply properties of conic sections in context.
  • MAT-12.NO.12 Extend polynomial identities to the complex numbers.

MAT-12.AR.12

BPSS-MAT-NO logo 12th Grade (MAT) Targeted Standard  
  (AR) Algebraic Reasoning 
Learners will look for, generate, and make sense of patterns, relationships, and algebraic symbols to represent mathematical models while adopting approaches and solutions in novel situations.
MAT-12.AR.12 Solve simple rational and radical equations in one variable and identify extraneous solutions.

proficiency scale iconProficiency Scale

Progressions

Linear Equations
  • MAT-07.AR.EE.01 Apply the properties of operations as strategies to add, subtract, factor, and expand linear expressions involving variables, integers, and/or non-negative fractions and decimals with an emphasis on writing equivalent expressions.
  • MAT-08.AR.EE.03 Explain the characteristics of a linear relationship, including identifying the slope and yintercept in tables, graphs, equations, and descriptions.
  • MAT-08.AR.EE.04 Represent linear relationships using tables, graphs, equations, and descriptions when given a relationship in one of these forms.
  • MAT-08.AR.EE.05 Solve linear equations with rational number coefficients and variables on both sides, including equations that require using the distributive property and/or combining and collecting like terms. Interpret the number of solutions. Give examples of linear equations in one variable with one solution, many solutions, or no solutions.
  • MAT-09.AR.03 Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear, quadratic, and exponential functions.
  • MAT-09.AR.04 Create linear and exponential equations in two or more variables to represent relationships between quantities. Graph equations on coordinate axes with appropriate labels and scales.
  • MAT-09.AR.05 Justify each step in solving a linear equation that may or may not have a solution.
  • MAT-09.AR.06 Solve linear equations and inequalities (to include compound inequalities) in one variable.
  • MAT-09.AR.07 Solve a system of linear equations graphically and algebraically. Create and solve a system of linear equations in context and interpret the results.
  • MAT-12.AR.05 Add, subtract, multiply, and divide rational expressions. Understand that rational expressions form a system analogous to rational numbers, closed under addition, subtraction, multiplication, and division by a nonzero rational expression.
  • MAT-12.AR.07 Create equations and inequalities and use them to solve problems. Include equations arising from linear and quadratic functions and simple rational and exponential functions.
  • MAT-12.AR.08 Create equations in two or more variables to represent relationships between quantities.
  • Graph equations on coordinate axes with appropriate labels and scales.
  • MAT-12.AR.09 Represent constraints by equations or inequalities and by systems of equations and/or inequalities and interpret solutions as viable or non-viable options in a modeling context.
  • MAT-12.AR.12 Solve simple rational and radical equations in one variable and identify extraneous solutions.
  • MAT-12.AR.F.14 Write arithmetic and geometric sequences both recursively and with an explicit formula and convert between the two forms. Use sequences to model situations.
  • MAT-12.AR.15 Apply the Factor and Remainder Theorems to determine efficiently whether a liner expression is a factor of a polynomial expression.
  • MAT-12.AR.16 Using graphs, technology, tables, or successive approximations, show that the solution(s) to the equation f(x) = g(x) is the x-value(s) that result in the y-values of f(x) and g(x) being the same.
  • MAT-12.AR.17 Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically.
  • MAT-12.AR.18 Find the inverse of a matrix if it exists and use it to solve systems of linear equations (using technology for matrices of dimension 3 × 3 or greater).
  • MAT-12.NO.13 Apply the Fundamental Theorem of Algebra to find all roots of a polynomial equation and determine the nature (i.e., integer, rational, irrational, real, complex) of the roots.
  • MAT-12.AR.19 Solve a system of equations in three or more variables with matrices (using technology).
  • MAT-12.AR.F.23 Use inverse functions to solve trigonometric equations that arise in modeling contexts; evaluate the solutions and interpret them in context.

MAT-12.AR.14

BPSS-MAT-NO logo 12th Grade (MAT) Targeted Standard  
  (AR) Algebraic Reasoning 
Learners will look for, generate, and make sense of patterns, relationships, and algebraic symbols to represent mathematical models while adopting approaches and solutions in novel situations.
MAT-12.AR.14 Identify zeros of polynomial equations when suitable factorizations are available. Use the zeros to construct a rough graph of the function defined by the polynomial.

proficiency scale iconProficiency Scale

Progressions

Quadratic Equations
  • MAT-09.AR.10 Solve quadratic equations in one variable by inspection (e.g., for x2 = 49) taking square roots, the quadratic formula, and factoring, as appropriate to the initial form of the equation.
  • MAT-12.NO.09 Apply the Fundamental Theorem of Algebra to determine the number of zeros for polynomial functions. Find all solutions to a polynomial equation.
  • MAT-12.AR.07 Create equations and inequalities and use them to solve problems. Include equations arising from linear and quadratic functions and simple rational and exponential functions.
  • MAT-12.AR.10 Derive the quadratic formula from the form 0 = ax2 + bx + c.
  • MAT-12.AR.11 Solve quadratic equations with real coefficients that have solutions of the form a + bi and a - bi.
  • MAT-12.AR.14 Identify zeros of polynomials when suitable factorizations are available. Use the zeros to construct a rough graph of the function defined by the polynomial.
  • MAT-12.AR.17 Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically.
Graphing Functions
  • MAT-08.AR.F.05 Describe qualitatively the functional relationship between two quantities by analyzing a graph, including where the function is constant, increasing, or decreasing; linear or nonlinear; and discrete or continuous. Create a graph that exhibits the qualitative features of a function described.
  • MAT-09.AR.F.01 Determine whether a relationship is a function given a table, graph, or words, identifying x as an element of the domain and f(x) as an element in the range. Determine the domain and range of a function in context.
  • MAT-09.AR.F.03 Sketch key features (to include intercepts, maximums, minimums, and lines of symmetry, where applicable) of linear, exponential, and quadratic functions modeling the relationship between two quantities using tables, graphs, written descriptions, and equations.
  • MAT-09.AR.F.09 Identify the effect of transformations on the graph of a linear, absolute value, or quadratic function by replacing f(x) with af(x), f(x - h), and f(x) + k, for specific values of a, h, and k (both positive and negative). Find the value of a, h, and k given the graph of the function.
  • MAT-09.AR.F.10 Find the inverse of a linear function and describe the relationship between the domain, range, and graph of the function and its inverse. Graph the inverse of a linear function.
  • MAT-09.AR.F.12 Identify, using graphs or tables, the solution(s) to linear or exponential functions f(x) = g(x) as xvalues that result in equivalent y-values.
  • MAT-12.AR.14 Identify zeros of polynomials when suitable factorizations are available. Use the zeros to construct a rough graph of the function defined by the polynomial.
  • MAT-12.AR.16 Identify, using graphs, technology, tables, or successive approximations, that the solution(s) to the equation f(x) = g(x) is the x-value(s) that result in the y-values of f(x) and g(x) being the same.
  • MAT-12.AR.F.04 Identify the effect of transformations on the graph of a function by replacing f(x) with af(x), f(bx), f(x - h), and f(x) + k, for specific values of a, h, and k (both positive and negative). Find the values of a, b, h, and k given the graph of the function. Recognize even and odd functions from their graphs and equations.
  • MAT-12.AR.F.08 Use tables, graphs, verbal descriptions, and equations to interpret and sketch the key features of a function modeling the relationship between two quantities.
  • MAT-12.AR.F.09 Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.
  • MAT-12.AR.F.10 Graph functions expressed symbolically and show key features of the graph by hand in simple cases and using technology for more complicated cases.
  • MAT-12.AR.F.11 Analyze and graph functions expressed symbolically (by hand in simple cases and using technology for more complicated cases), identifying key features of the graph.
  • MAT-12.AR.F.12 Compare the end behavior of linear, quadratic, and exponential functions using graphs and/or tables to show that a quantity increasing exponentially eventually exceeds a quantity increasing as a linear or quadratic function

MAT-12.AR.F.01

BPSS-MAT-NO logo 12th Grade (MAT) Targeted Standard  
  (AR) Algebraic Reasoning (Functions)
Learners will develop a foundational knowledge of functions and use them to model relationships between quantities.
MAT-12.AR.F.01 Write a function that describes a relationship between two quantities.
  • Combine standard function types using arithmetic operations.
  • Compose functions.

proficiency scale iconProficiency Scale

Progressions

Functional Relationships
  • MAT-08.AR.F.01 Defend whether a relation is a function from various representations using appropriate function language.
  • MAT-08.AR.F.02 Compare and contrast properties of two linear functions, each represented in a different way (algebraically, graphically, numerically in tables, and/or by descriptions).
  • MAT-08.AR.F.03 Compare and contrast linear and non-linear functions represented in different ways (algebraically, graphically, numerically in tables, and/or by descriptions).
  • MAT-08.AR.F.04 Model a linear relationship between two quantities by creating a table, graph, and equation. Interpret the rate of change and initial value of a linear function in terms of the situation it models.
  • MAT-08.AR.F.05 Describe qualitatively the functional relationship between two quantities by analyzing a graph, including where the function is constant, increasing, or decreasing; linear or nonlinear; and discrete or continuous. Create a graph that exhibits the qualitative features of a function described.
  • MAT-09.AR.F.01 Determine whether a relationship is a function given a table, graph, or words, identifying x as an element of the domain and f(x) as an element in the range. Determine the domain and range of a function in context.
  • MAT-09.AR.F.02 Use function notation, evaluate functions for inputs in their domains and interpret statements that use function notation in terms of context.
  • MAT-09.AR.F.03 Sketch key features (to include intercepts, maximums, minimums, and lines of symmetry, where applicable) of linear, exponential, and quadratic functions modeling the relationship between two quantities using tables, graphs, written descriptions, and equations.
  • MAT-09.AR.F.04 Relate the domain of a linear, quadratic, or exponential function to its graph and, where applicable, to the quantitative relationship it describes.
  • MAT-09.AR.F.05 Calculate and interpret the average rate of change of a linear, quadratic, or exponential function (presented algebraically or as a table) over a specified interval. Estimate the rate of change from a graph.
  • MAT-09.AR.F.06 Write a function defined by an expression in different but equivalent forms to reveal and explain the different properties of the function.
  • MAT-09.AR.F.07 Compare key features of two linear, exponential, or quadratic functions, each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions).
  • MAT-09.AR.F.08 Identify situations that can be modeled with linear, quadratic, and exponential functions.
  • MAT-09.AR.F.10 Find the inverse of a linear function and describe the relationship between the domain, range, and graph of the function and its inverse. Graph the inverse of a linear function.
  • MAT-09.AR.F.11 Interpret the parameters of a linear, quadratic, or exponential function in terms of context.
  • MAT-10.GM.02 Represent transformations in the plane. Describe transformations as functions that take points in the plane as inputs and give other points as outputs. Compare transformations that preserve distance and angle to those that do not (i.e., rigid versus non-rigid motion).
  • MAT-10.GM.26 Recognize that the radian measure of an angle is the ratio of the length of the arc to the length of the radius of a circle.
  • MAT-12.AR.F.01 Write a function that describes a relationship between two quantities.
  • MAT-12.AR.F.02 Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.
  • MAT-12.AR.F.03 Write a function defined by an expression in different but equivalent forms to reveal and explain the different properties of the function.
  • MAT-12.AR.F.04 Identify the effect of transformations on the graph of a function by replacing f(x) with af(x), f(bx), f(x - h), and f(x) + k, for specific values of a, h, and k (both positive and negative). Find the value of a, b, h, and k given the graph of the function. Recognize even and odd functions from their graphs and equations.
  • MAT-12.AR.F.05 Find inverse functions.
  • MAT-12.AR.F.06 Apply the inverse relationship between exponents and logarithms to solve problems.
  • MAT-12.AR.F.07 Compare key features of two functions, each represented in a different way (algebraically, graphically, numerically, in tables, or by verbal descriptions).
  • MAT-12.AR.F.08 Use tables, graphs, verbal discussions, and equations to interpret and sketch the key features of a function modeling the relationship between two quantities.
  • MAT-12.AR.F.09 Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.
  • MAT-12.AR.F.11 Analyze and graph functions expressed symbolically (by hand in simple cases and using technology for more complicated cases), identifying key features of the graph.
  • MAT-12.AR.F.12 Compare the end behavior of linear, quadratic, and exponential functions using graphs and/or tables to show that a quantity.
  • MAT-12.AR.F.13 Determine whether a linear, quadratic, polynomial, exponential, logarithmic, or trigonometric model fits the situation. Determine an appropriate mathematical model in context (with or without technology).
  • MAT-12.AR.F.14 Write arithmetic and geometric sequences both recursively and with an explicit formula and convert between the two forms. Use sequences to model situations.
  • MAT-12.AR.F.16 Extend right triangle trigonometry and apply knowledge of the unit circle to determine values of sine, cosine, and tangent for multiples of π /3, π/4 and π/6.
  • MAT-12.AR.F.17 Use the Pythagorean Identity sin²(θ) + cos²(θ) = 1 to find sin(θ), cos(θ), or tan(θ) given sin(θ), cos(θ), or tan(θ) and the quadrant of the angle.
  • MAT-12.AR.F.18 Explain how the unit circle in the coordinate plane enables the extension of trigonometric functions to all real numbers, interpreted as radian measures of angles traversed counterclockwise around the unit circle.
  • MAT-12.AR.F.19 Use the unit circle to express the values of sine, cosine, and tangent for π - x, π + x, and 2π - x in terms of their values for x, where x is any real number.
  • MAT-12.AR.F.20 Use the unit circle to explain the symmetry (odd and even) and the periodicity of trigonometric functions.
  • MAT-12.AR.F.21 Create a trigonometric function to model periodic phenomena.
  • MAT-12.AR.F.22 Restrict the domain of a trigonometric function to construct its inverse.
  • MAT-12.AR.F.23 Use inverse functions to solve trigonometric equations that arise in modeling contexts; evaluate the solutions and interpret them in context.
  • MAT-12.AR.F.24 Know and apply the addition and subtraction formulas for sine, cosine, and tangent to solve problems.

MAT-12.AR.F.03

BPSS-MAT-NO logo 12th Grade (MAT) Targeted Standard  
  (AR) Algebraic Reasoning (Functions)
Learners will develop a foundational knowledge of functions and use them to model relationships between quantities.
MAT-12.AR.F.03 Write a function defined by an expression in different but equivalent forms to reveal and explain the different properties of the function.
  • Use the process of factoring and completing the square in a quadratic function to show zeros, minimum/maximum, and symmetry of the graph, and interpret these in terms of context.
  • Use the properties of exponents to interpret expressions for exponential functions.

proficiency scale iconProficiency Scale

Progressions

Exponents

  • MAT-05.NO.NBT.07 Explain patterns in the number of zeros of the product when multiplying a number by powers of 10. Explain patterns in the placement of the decimal point when a decimal is multiplied or divided by a power of 10. Use whole-number exponents to denote powers of 10.
  • MAT-06.AR.EE.01 Write, read, and evaluate numerical expressions, including expressions with whole number exponents and grouping symbols.
  • MAT-08.AR.EE.01 Explain the relationship between repeated multiplication and the properties of integer exponents. Apply a single exponent property to generate equivalent numeric and algebraic expressions that include numerical coefficients.
  • MAT-09.NO.01 Explain how the definition of rational exponents follows from extending the properties of integer exponents; rewrite simple expressions involving radicals and rational exponents using the properties of exponents.
  • MAT-09.NO.02 Perform basic operations on simple radical expressions to write a simplified equivalent expression.
  • MAT-09.AR.06 Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear, quadratic, and exponential functions.
  • MAT-09.AR.04 Create linear and exponential equations in two or more variables to represent relationships between quantities. Graph equations on coordinate axes with proper labels and scales.
  • MAT-09.AR.F.06 Write a function defined by an expression in different but equivalent forms to reveal and explain the different properties of the function.
  • MAT-0.AR.F.08 Identify situations that can be modeled with linear, quadratic, and exponential functions. Justify the most appropriate model for a situation based on the rate of change over equal intervals. Include situations in which a quantity grows or decays. 
  • MAT-12.NO.01 Rewrite complex expressions involving radicals and rational exponents using the properties of exponents.
  • MAT-12.NO.02 Perform basic operations on advanced radicals and simplify radicals to write equivalent expressions.
  • MAT-12.AR.07 Create equations and inequalities and use them to solve problems. Include equations arising from linear and quadratic functions and simple rational and exponential functions.
  • MAT-12.AR.08 Create equations in two or more variables to represent relationships between quantities. Graph equations on coordinate axes with appropriate labels and scales.
  • MAT-12.AR.F.03 Write a function defined by an expression in different but equivalent forms to reveal and explain the different properties of the function.
  • MAT-12.AR.F.06 Apply the inverse relationship between exponents and logarithms to solve problems.
  • MAT-12.AR.F.15 Use properties of logarithms to express the solution to abct = d where a, c, and d are real numbers and b is a positive real number. Evaluate the logarithm using technology when appropriate.
Decompose Numbers and/or Expressions
  • MAT-00.AR.OA.03 Decompose numbers less than or equal to 10 into pairs in more than one way using verbal explanations, objects, or drawings.
  • MAT-01.AR.OA.03 Decompose numbers less than or equal to 20 in more than one way.
  • MAT-09.AR.01 Use the structure of an expression (i.e., quadratic and exponential) to identify ways to rewrite it.
  • MAT-09.AR.F.06 Write a function defined by an expression in different but equivalent forms to reveal and explain the different properties of the function.
  • MAT-09.AR.F.11 Interpret the parameters in a linear, quadratic, or exponential function in context.
  • MAT-12.AR.01 Use the structure of an expression (to extend to polynomial and rational expressions) to identify ways to rewrite it.
  • MAT-12.AR.03 Interpret expressions that represent a quantity in context.
  • MAT-12.AR.06 Rewrite simple rational expressions in different forms; write a(x)/b(x) in the form q(x) + r(x)/b(x), where a(x), b(x), q(x), and r(x) are polynomials with the degree of r(x) less than the degree of b(x), using inspection, division, or technology for the more complicated examples.
  • MAT-12.AR.F.03 Write a function defined by an expression in different but equivalent forms to reveal and explain the different properties of the function.
  • MAT-12.AR.20 Apply the Binomial Theorem for the expansion of (ax + by)n in powers of x and y for a positive integer n and integers a and b
Factor Pairs/Multiples
  • MAT-04.AR.OA.04 Find factor pairs and multiples within the range of 1-36 while classifying numbers as prime or composite.
  • MAT-05.AR.OA.04 Find factor pairs and multiples within the range of 1-100 while classifying numbers as prime or composite.
  • MAT-06.NO.O.04 Determine the greatest common factor of two whole numbers less than or equal to 100 and the least common multiple of two whole numbers less than or equal to 12.
  • MAT-09.AR.01 Use the structure of an expression (i.e., quadratic and exponential) to identify ways to rewrite it.
  • MAT-09.AR.F.06 Write a function defined by an expression in different but equivalent forms to reveal and explain the different properties of the function.
  • MAT-09.AR.F.11 Interpret the parameters in a linear, quadratic, or exponential function in context.
  • MAT--12.AR.02 Use the structure of an expression (to extend to polynomial and rational expressions) to identify ways to rewrite it.
  • MAT-12.AR.03 Interpret expressions that represent a quantity in context.
  • MAT-12.AR.04 Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.
  • MAT-12.AR.06 Rewrite simple rational expressions in different forms; write a(x)/b(x) in the form q(x) + r(x)/b(x), where a(x), b(x), q(x), and r(x) are polynomials with the degree of r(x) less than the degree of b(x), using inspection, division, or technology for the more complicated examples.
  • MAT-12.AR.F.03 Write a function defined by an expression in different but equivalent forms to reveal and explain the different properties of the function.
Equivalent Expressions
  • MAT-06.AR.EE.03 Identify when two expressions are equivalent. Apply the properties of operations to generate equivalent expressions.
  • MAT-07.AR.EE.01 Apply the properties of operations as strategies to add, subtract, factor, and expand linear expressions involving variables, integers, and/or non-negative fractions and decimals with an emphasis on writing equivalent expressions.
  • MAT-08.AR.EE.01 Explain the relationship between repeated multiplication and the properties of integer exponents. Apply a single exponent property to generate equivalent numeric and algebraic expressions that include numerical coefficients.
  • MAT-09.NO.02 Perform basic operations on simple radical expressions to write a simplified equivalent expression.
  • MAT-09.AR.01 Use the structure of an expression (i.e., quadratic and exponential) to identify ways to rewrite it.
  • MAT-09.AR.02 Rearrange formulas to isolate a quantity or variable(s) of interest using the same reasoning as in solving equations.
  • MAT-09.AR.07 Rearrange multi-variable formulas to highlight a quantity of interest.
  • MAT-09.AR.F.06 Write a function defined by an expression in different but equivalent forms to reveal and explain the different properties of the function.
  • MAT-12.NO.02 Perform operations on complex radical expressions to write a simplified equivalent expression.
  • MAT-12.AR.01 Rearrange multi-variable formulas to highlight a quantity of interest.
  • MAT-12.AR.02 Use the structure of an expression (to extend to polynomial and rational expressions) to identify ways to rewrite it.
  • MAT-12.AR.04 Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.
  • MAT-12.AR.05 Add, subtract, multiply, and divide rational expressions. Understand that rational expressions form a system analogous to rational numbers, closed under addition, subtraction, multiplication, and division by a nonzero rational expression.
  • MAT-12.AR.F.03 Write a function defined by an expression in different but equivalent forms to reveal and explain the different properties of the function.
  • MAT-12.GM.01 Write the equation of a conic section given its special features. Convert between the standard form and general form equations of conic sections.
  • MAT-12.GM.02 Identify key features of a conic section given its equation. Apply properties of conic sections in context.
  • MAT-12.NO.12 Extend polynomial identities to the complex numbers.
Functional Relationships
  • MAT-08.AR.F.01 Defend whether a relation is a function from various representations using appropriate function language.
  • MAT-08.AR.F.02 Compare and contrast properties of two linear functions, each represented in a different way (algebraically, graphically, numerically in tables, and/or by descriptions).
  • MAT-08.AR.F.03 Compare and contrast linear and non-linear functions represented in different ways (algebraically, graphically, numerically in tables, and/or by descriptions).
  • MAT-08.AR.F.04 Model a linear relationship between two quantities by creating a table, graph, and equation. Interpret the rate of change and initial value of a linear function in terms of the situation it models.
  • MAT-08.AR.F.05 Describe qualitatively the functional relationship between two quantities by analyzing a graph, including where the function is constant, increasing, or decreasing; linear or nonlinear; and discrete or continuous. Create a graph that exhibits the qualitative features of a function described.
  • MAT-09.AR.F.01 Determine whether a relationship is a function given a table, graph, or words, identifying x as an element of the domain and f(x) as an element in the range. Determine the domain and range of a function in context.
  • MAT-09.AR.F.02 Use function notation, evaluate functions for inputs in their domains and interpret statements that use function notation in terms of context.
  • MAT-09.AR.F.03 Sketch key features (to include intercepts, maximums, minimums, and lines of symmetry, where applicable) of linear, exponential, and quadratic functions modeling the relationship between two quantities using tables, graphs, written descriptions, and equations.
  • MAT-09.AR.F.04 Relate the domain of a linear, quadratic, or exponential function to its graph and, where applicable, to the quantitative relationship it describes.
  • MAT-09.AR.F.05 Calculate and interpret the average rate of change of a linear, quadratic, or exponential function (presented algebraically or as a table) over a specified interval. Estimate the rate of change from a graph.
  • MAT-09.AR.F.06 Write a function defined by an expression in different but equivalent forms to reveal and explain the different properties of the function.
  • MAT-09.AR.F.07 Compare key features of two linear, exponential, or quadratic functions, each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions).
  • MAT-09.AR.F.08 Identify situations that can be modeled with linear, quadratic, and exponential functions.
  • MAT-09.AR.F.10 Find the inverse of a linear function and describe the relationship between the domain, range, and graph of the function and its inverse. Graph the inverse of a linear function.
  • MAT-09.AR.F.11 Interpret the parameters of a linear, quadratic, or exponential function in terms of context.
  • MAT-10.GM.02 Represent transformations in the plane. Describe transformations as functions that take points in the plane as inputs and give other points as outputs. Compare transformations that preserve distance and angle to those that do not (i.e., rigid versus non-rigid motion).
  • MAT-10.GM.26 Recognize that the radian measure of an angle is the ratio of the length of the arc to the length of the radius of a circle.
  • MAT-12.AR.F.01 Write a function that describes a relationship between two quantities.
  • MAT-12.AR.F.02 Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.
  • MAT-12.AR.F.03 Write a function defined by an expression in different but equivalent forms to reveal and explain the different properties of the function.
  • MAT-12.AR.F.04 Identify the effect of transformations on the graph of a function by replacing f(x) with af(x), f(bx), f(x - h), and f(x) + k, for specific values of a, h, and k (both positive and negative). Find the value of a, b, h, and k given the graph of the function. Recognize even and odd functions from their graphs and equations.
  • MAT-12.AR.F.05 Find inverse functions.
  • MAT-12.AR.F.06 Apply the inverse relationship between exponents and logarithms to solve problems.
  • MAT-12.AR.F.07 Compare key features of two functions, each represented in a different way (algebraically, graphically, numerically, in tables, or by verbal descriptions).
  • MAT-12.AR.F.08 Use tables, graphs, verbal discussions, and equations to interpret and sketch the key features of a function modeling the relationship between two quantities.
  • MAT-12.AR.F.09 Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.
  • MAT-12.AR.F.11 Analyze and graph functions expressed symbolically (by hand in simple cases and using technology for more complicated cases), identifying key features of the graph.
  • MAT-12.AR.F.12 Compare the end behavior of linear, quadratic, and exponential functions using graphs and/or tables to show that a quantity.
  • MAT-12.AR.F.13 Determine whether a linear, quadratic, polynomial, exponential, logarithmic, or trigonometric model fits the situation. Determine an appropriate mathematical model in context (with or without technology).
  • MAT-12.AR.F.14 Write arithmetic and geometric sequences both recursively and with an explicit formula and convert between the two forms. Use sequences to model situations.
  • MAT-12.AR.F.16 Extend right triangle trigonometry and apply knowledge of the unit circle to determine values of sine, cosine, and tangent for multiples of π /3, π/4 and π/6.
  • MAT-12.AR.F.17 Use the Pythagorean Identity sin²(θ) + cos²(θ) = 1 to find sin(θ), cos(θ), or tan(θ) given sin(θ), cos(θ), or tan(θ) and the quadrant of the angle.
  • MAT-12.AR.F.18 Explain how the unit circle in the coordinate plane enables the extension of trigonometric functions to all real numbers, interpreted as radian measures of angles traversed counterclockwise around the unit circle.
  • MAT-12.AR.F.19 Use the unit circle to express the values of sine, cosine, and tangent for π - x, π + x, and 2π - x in terms of their values for x, where x is any real number.
  • MAT-12.AR.F.20 Use the unit circle to explain the symmetry (odd and even) and the periodicity of trigonometric functions.
  • MAT-12.AR.F.21 Create a trigonometric function to model periodic phenomena.
  • MAT-12.AR.F.22 Restrict the domain of a trigonometric function to construct its inverse.
  • MAT-12.AR.F.23 Use inverse functions to solve trigonometric equations that arise in modeling contexts; evaluate the solutions and interpret them in context.
  • MAT-12.AR.F.24 Know and apply the addition and subtraction formulas for sine, cosine, and tangent to solve problems.

MAT-12.AR.F.04

BPSS-MAT-NO logo 12th Grade (MAT) Targeted Standard  
  (AR) Algebraic Reasoning (Functions)
Learners will develop a foundational knowledge of functions and use them to model relationships between quantities.
MAT-12.AR.F.04 Identify the effect of transformations on the graph of a function by replacing f(x) with af(x), f(bx), f(x - h), and f(x) + k, for specific values of a, h, and k (both positive and negative). Find the value of a, b, h, and k given the graph of the function. Recognize even and odd functions from their graphs and equations.

proficiency scale iconProficiency Scale

Progressions

Functional Relationships
  • MAT-08.AR.F.01 Defend whether a relation is a function from various representations using appropriate function language.
  • MAT-08.AR.F.02 Compare and contrast properties of two linear functions, each represented in a different way (algebraically, graphically, numerically in tables, and/or by descriptions).
  • MAT-08.AR.F.03 Compare and contrast linear and non-linear functions represented in different ways (algebraically, graphically, numerically in tables, and/or by descriptions).
  • MAT-08.AR.F.04 Model a linear relationship between two quantities by creating a table, graph, and equation. Interpret the rate of change and initial value of a linear function in terms of the situation it models.
  • MAT-08.AR.F.05 Describe qualitatively the functional relationship between two quantities by analyzing a graph, including where the function is constant, increasing, or decreasing; linear or nonlinear; and discrete or continuous. Create a graph that exhibits the qualitative features of a function described.
  • MAT-09.AR.F.01 Determine whether a relationship is a function given a table, graph, or words, identifying x as an element of the domain and f(x) as an element in the range. Determine the domain and range of a function in context.
  • MAT-09.AR.F.02 Use function notation, evaluate functions for inputs in their domains and interpret statements that use function notation in terms of context.
  • MAT-09.AR.F.03 Sketch key features (to include intercepts, maximums, minimums, and lines of symmetry, where applicable) of linear, exponential, and quadratic functions modeling the relationship between two quantities using tables, graphs, written descriptions, and equations.
  • MAT-09.AR.F.04 Relate the domain of a linear, quadratic, or exponential function to its graph and, where applicable, to the quantitative relationship it describes.
  • MAT-09.AR.F.05 Calculate and interpret the average rate of change of a linear, quadratic, or exponential function (presented algebraically or as a table) over a specified interval. Estimate the rate of change from a graph.
  • MAT-09.AR.F.06 Write a function defined by an expression in different but equivalent forms to reveal and explain the different properties of the function.
  • MAT-09.AR.F.07 Compare key features of two linear, exponential, or quadratic functions, each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions).
  • MAT-09.AR.F.08 Identify situations that can be modeled with linear, quadratic, and exponential functions.
  • MAT-09.AR.F.10 Find the inverse of a linear function and describe the relationship between the domain, range, and graph of the function and its inverse. Graph the inverse of a linear function.
  • MAT-09.AR.F.11 Interpret the parameters of a linear, quadratic, or exponential function in terms of context.
  • MAT-10.GM.02 Represent transformations in the plane. Describe transformations as functions that take points in the plane as inputs and give other points as outputs. Compare transformations that preserve distance and angle to those that do not (i.e., rigid versus non-rigid motion).
  • MAT-10.GM.26 Recognize that the radian measure of an angle is the ratio of the length of the arc to the length of the radius of a circle.
  • MAT-12.AR.F.01 Write a function that describes a relationship between two quantities.
  • MAT-12.AR.F.02 Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.
  • MAT-12.AR.F.03 Write a function defined by an expression in different but equivalent forms to reveal and explain the different properties of the function.
  • MAT-12.AR.F.04 Identify the effect of transformations on the graph of a function by replacing f(x) with af(x), f(bx), f(x - h), and f(x) + k, for specific values of a, h, and k (both positive and negative). Find the value of a, b, h, and k given the graph of the function. Recognize even and odd functions from their graphs and equations.
  • MAT-12.AR.F.05 Find inverse functions.
  • MAT-12.AR.F.06 Apply the inverse relationship between exponents and logarithms to solve problems.
  • MAT-12.AR.F.07 Compare key features of two functions, each represented in a different way (algebraically, graphically, numerically, in tables, or by verbal descriptions).
  • MAT-12.AR.F.08 Use tables, graphs, verbal discussions, and equations to interpret and sketch the key features of a function modeling the relationship between two quantities.
  • MAT-12.AR.F.09 Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.
  • MAT-12.AR.F.11 Analyze and graph functions expressed symbolically (by hand in simple cases and using technology for more complicated cases), identifying key features of the graph.
  • MAT-12.AR.F.12 Compare the end behavior of linear, quadratic, and exponential functions using graphs and/or tables to show that a quantity.
  • MAT-12.AR.F.13 Determine whether a linear, quadratic, polynomial, exponential, logarithmic, or trigonometric model fits the situation. Determine an appropriate mathematical model in context (with or without technology).
  • MAT-12.AR.F.14 Write arithmetic and geometric sequences both recursively and with an explicit formula and convert between the two forms. Use sequences to model situations.
  • MAT-12.AR.F.16 Extend right triangle trigonometry and apply knowledge of the unit circle to determine values of sine, cosine, and tangent for multiples of π /3, π/4 and π/6.
  • MAT-12.AR.F.17 Use the Pythagorean Identity sin²(θ) + cos²(θ) = 1 to find sin(θ), cos(θ), or tan(θ) given sin(θ), cos(θ), or tan(θ) and the quadrant of the angle.
  • MAT-12.AR.F.18 Explain how the unit circle in the coordinate plane enables the extension of trigonometric functions to all real numbers, interpreted as radian measures of angles traversed counterclockwise around the unit circle.
  • MAT-12.AR.F.19 Use the unit circle to express the values of sine, cosine, and tangent for π - x, π + x, and 2π - x in terms of their values for x, where x is any real number.
  • MAT-12.AR.F.20 Use the unit circle to explain the symmetry (odd and even) and the periodicity of trigonometric functions.
  • MAT-12.AR.F.21 Create a trigonometric function to model periodic phenomena.
  • MAT-12.AR.F.22 Restrict the domain of a trigonometric function to construct its inverse.
  • MAT-12.AR.F.23 Use inverse functions to solve trigonometric equations that arise in modeling contexts; evaluate the solutions and interpret them in context.
  • MAT-12.AR.F.24 Know and apply the addition and subtraction formulas for sine, cosine, and tangent to solve problems.
Graphing Functions
  • MAT-08.AR.F.05 Describe qualitatively the functional relationship between two quantities by analyzing a graph, including where the function is constant, increasing, or decreasing; linear or nonlinear; and discrete or continuous. Create a graph that exhibits the qualitative features of a function described.
  • MAT-09.AR.F.01 Determine whether a relationship is a function given a table, graph, or words, identifying x as an element of the domain and f(x) as an element in the range. Determine the domain and range of a function in context.
  • MAT-09.AR.F.03 Sketch key features (to include intercepts, maximums, minimums, and lines of symmetry, where applicable) of linear, exponential, and quadratic functions modeling the relationship between two quantities using tables, graphs, written descriptions, and equations.
  • MAT-09.AR.F.09 Identify the effect of transformations on the graph of a linear, absolute value, or quadratic function by replacing f(x) with af(x), f(x - h), and f(x) + k, for specific values of a, h, and k (both positive and negative). Find the value of a, h, and k given the graph of the function.
  • MAT-09.AR.F.10 Find the inverse of a linear function and describe the relationship between the domain, range, and graph of the function and its inverse. Graph the inverse of a linear function.
  • MAT-09.AR.F.12 Identify, using graphs or tables, the solution(s) to linear or exponential functions f(x) = g(x) as xvalues that result in equivalent y-values.
  • MAT-12.AR.14 Identify zeros of polynomials when suitable factorizations are available. Use the zeros to construct a rough graph of the function defined by the polynomial.
  • MAT-12.AR.16 Identify, using graphs, technology, tables, or successive approximations, that the solution(s) to the equation f(x) = g(x) is the x-value(s) that result in the y-values of f(x) and g(x) being the same.
  • MAT-12.AR.F.04 Identify the effect of transformations on the graph of a function by replacing f(x) with af(x), f(bx), f(x - h), and f(x) + k, for specific values of a, h, and k (both positive and negative). Find the values of a, b, h, and k given the graph of the function. Recognize even and odd functions from their graphs and equations.
  • MAT-12.AR.F.08 Use tables, graphs, verbal descriptions, and equations to interpret and sketch the key features of a function modeling the relationship between two quantities.
  • MAT-12.AR.F.09 Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.
  • MAT-12.AR.F.10 Graph functions expressed symbolically and show key features of the graph by hand in simple cases and using technology for more complicated cases.
  • MAT-12.AR.F.11 Analyze and graph functions expressed symbolically (by hand in simple cases and using technology for more complicated cases), identifying key features of the graph.
  • MAT-12.AR.F.12 Compare the end behavior of linear, quadratic, and exponential functions using graphs and/or tables to show that a quantity increasing exponentially eventually exceeds a quantity increasing as a linear or quadratic function

Transformations

  • MAT-08.GM.GF.01 Perform single transformations to a figure on or off the coordinate plane and determine whether the figures are congruent or similar.
  • MAT-08.GM.GF.02 Describe the characteristics of transformations on the coordinate plane using transformation language.
  • MAT-08.GM.GF.03 Name the type of transformation(s) needed to map a pre-image to its image.
  • MAT-09.AR.F.09 Identify the effect of transformations on the graph of a linear, absolute value, or quadratic function by replacing f(x) with f(x) + k, f(x - h) and af(x), for specific values of a, h, and k (both positive and negative). Find the values of a, h, and k given the graph of the function.
  • MAT-10.GM.02 Represent transformations in the plane. Describe transformations as functions that take points as outputs. Compare transformations that preserve distance and angle to those that do not (i.e., rigid versus non-rigid motion).
  • MAT-10.GM.03 Describe the rotations and reflections of a triangle, rectangle, parallelogram, trapezoid, or regular polygon that map each figure onto itself or another figure.
  • MAT-10.GM.04 Develop or verify the characteristics of rotations, reflections, and translations in angles, circles, perpendicular lines, parallel lines, and line segments.
  • MAT-10.GM.05 Draw the image of a figure that has undergone a series of transformations [rotation(s),
  • reflection(s), or translation(s)] of a geometric figure using a variety of methods (e.g., graph paper, tracing paper, or geometry software).
  • MAT-10.GM.06 Predict the effect of a specified rigid motion on a given figure using geometric descriptions of rigid motions. Determine whether two figures are congruent using the definition of congruence in terms of rigid motions.
  • MAT-10.GM.14 Verify experimentally and justify the properties of dilations given by a center and a scale factor.
  • MAT-10.GM.15 Use transformations to decide if two given figures are similar. Apply the meaning of all corresponding pairs of angles and the proportionality of all corresponding pairs of sides.
  • MAT-10.GM.16 Prove similarity theorems about triangles.
  • MAT-10.GM.17 Apply knowledge of congruence and similarity criteria for triangles to solve problems and prove relationships in various geometric figures.
  • MAT-12.AR.F.4 Identify the effect of transformations on the graph of a function by replacing f(x) with af(x), f(bx), f(x-h), and f(x) + k, for specific values of a, h, and k (both positive and negative). Find the values of a, b, h, and k given the graph of the function. Recognize even and odd functions from their graphs and equations.
  • MAT-12.NO.18 Multiply a vector by a scalar.

MAT-12.AR.F.06

BPSS-MAT-NO logo 12th Grade (MAT) Targeted Standard  
  (AR) Algebraic Reasoning (Functions)
Learners will develop a foundational knowledge of functions and use them to model relationships between quantities.
MAT-12.AR.F.06 Apply the inverse relationship between exponents and logarithms to solve problems.

proficiency scale iconProficiency Scale

Progressions

Exponents

  • MAT-05.NO.NBT.07 Explain patterns in the number of zeros of the product when multiplying a number by powers of 10. Explain patterns in the placement of the decimal point when a decimal is multiplied or divided by a power of 10. Use whole-number exponents to denote powers of 10.
  • MAT-06.AR.EE.01 Write, read, and evaluate numerical expressions, including expressions with whole number exponents and grouping symbols.
  • MAT-08.AR.EE.01 Explain the relationship between repeated multiplication and the properties of integer exponents. Apply a single exponent property to generate equivalent numeric and algebraic expressions that include numerical coefficients.
  • MAT-09.NO.01 Explain how the definition of rational exponents follows from extending the properties of integer exponents; rewrite simple expressions involving radicals and rational exponents using the properties of exponents.
  • MAT-09.NO.02 Perform basic operations on simple radical expressions to write a simplified equivalent expression.
  • MAT-09.AR.06 Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear, quadratic, and exponential functions.
  • MAT-09.AR.04 Create linear and exponential equations in two or more variables to represent relationships between quantities. Graph equations on coordinate axes with proper labels and scales.
  • MAT-09.AR.F.06 Write a function defined by an expression in different but equivalent forms to reveal and explain the different properties of the function.
  • MAT-0.AR.F.08 Identify situations that can be modeled with linear, quadratic, and exponential functions. Justify the most appropriate model for a situation based on the rate of change over equal intervals. Include situations in which a quantity grows or decays. 
  • MAT-12.NO.01 Rewrite complex expressions involving radicals and rational exponents using the properties of exponents.
  • MAT-12.NO.02 Perform basic operations on advanced radicals and simplify radicals to write equivalent expressions.
  • MAT-12.AR.07 Create equations and inequalities and use them to solve problems. Include equations arising from linear and quadratic functions and simple rational and exponential functions.
  • MAT-12.AR.08 Create equations in two or more variables to represent relationships between quantities. Graph equations on coordinate axes with appropriate labels and scales.
  • MAT-12.AR.F.03 Write a function defined by an expression in different but equivalent forms to reveal and explain the different properties of the function.
  • MAT-12.AR.F.06 Apply the inverse relationship between exponents and logarithms to solve problems.
  • MAT-12.AR.F.15 Use properties of logarithms to express the solution to abct = d where a, c, and d are real numbers and b is a positive real number. Evaluate the logarithm using technology when appropriate.
Functional Relationships
  • MAT-08.AR.F.01 Defend whether a relation is a function from various representations using appropriate function language.
  • MAT-08.AR.F.02 Compare and contrast properties of two linear functions, each represented in a different way (algebraically, graphically, numerically in tables, and/or by descriptions).
  • MAT-08.AR.F.03 Compare and contrast linear and non-linear functions represented in different ways (algebraically, graphically, numerically in tables, and/or by descriptions).
  • MAT-08.AR.F.04 Model a linear relationship between two quantities by creating a table, graph, and equation. Interpret the rate of change and initial value of a linear function in terms of the situation it models.
  • MAT-08.AR.F.05 Describe qualitatively the functional relationship between two quantities by analyzing a graph, including where the function is constant, increasing, or decreasing; linear or nonlinear; and discrete or continuous. Create a graph that exhibits the qualitative features of a function described.
  • MAT-09.AR.F.01 Determine whether a relationship is a function given a table, graph, or words, identifying x as an element of the domain and f(x) as an element in the range. Determine the domain and range of a function in context.
  • MAT-09.AR.F.02 Use function notation, evaluate functions for inputs in their domains and interpret statements that use function notation in terms of context.
  • MAT-09.AR.F.03 Sketch key features (to include intercepts, maximums, minimums, and lines of symmetry, where applicable) of linear, exponential, and quadratic functions modeling the relationship between two quantities using tables, graphs, written descriptions, and equations.
  • MAT-09.AR.F.04 Relate the domain of a linear, quadratic, or exponential function to its graph and, where applicable, to the quantitative relationship it describes.
  • MAT-09.AR.F.05 Calculate and interpret the average rate of change of a linear, quadratic, or exponential function (presented algebraically or as a table) over a specified interval. Estimate the rate of change from a graph.
  • MAT-09.AR.F.06 Write a function defined by an expression in different but equivalent forms to reveal and explain the different properties of the function.
  • MAT-09.AR.F.07 Compare key features of two linear, exponential, or quadratic functions, each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions).
  • MAT-09.AR.F.08 Identify situations that can be modeled with linear, quadratic, and exponential functions.
  • MAT-09.AR.F.10 Find the inverse of a linear function and describe the relationship between the domain, range, and graph of the function and its inverse. Graph the inverse of a linear function.
  • MAT-09.AR.F.11 Interpret the parameters of a linear, quadratic, or exponential function in terms of context.
  • MAT-10.GM.02 Represent transformations in the plane. Describe transformations as functions that take points in the plane as inputs and give other points as outputs. Compare transformations that preserve distance and angle to those that do not (i.e., rigid versus non-rigid motion).
  • MAT-10.GM.26 Recognize that the radian measure of an angle is the ratio of the length of the arc to the length of the radius of a circle.
  • MAT-12.AR.F.01 Write a function that describes a relationship between two quantities.
  • MAT-12.AR.F.02 Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.
  • MAT-12.AR.F.03 Write a function defined by an expression in different but equivalent forms to reveal and explain the different properties of the function.
  • MAT-12.AR.F.04 Identify the effect of transformations on the graph of a function by replacing f(x) with af(x), f(bx), f(x - h), and f(x) + k, for specific values of a, h, and k (both positive and negative). Find the value of a, b, h, and k given the graph of the function. Recognize even and odd functions from their graphs and equations.
  • MAT-12.AR.F.05 Find inverse functions.
  • MAT-12.AR.F.06 Apply the inverse relationship between exponents and logarithms to solve problems.
  • MAT-12.AR.F.07 Compare key features of two functions, each represented in a different way (algebraically, graphically, numerically, in tables, or by verbal descriptions).
  • MAT-12.AR.F.08 Use tables, graphs, verbal discussions, and equations to interpret and sketch the key features of a function modeling the relationship between two quantities.
  • MAT-12.AR.F.09 Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.
  • MAT-12.AR.F.11 Analyze and graph functions expressed symbolically (by hand in simple cases and using technology for more complicated cases), identifying key features of the graph.
  • MAT-12.AR.F.12 Compare the end behavior of linear, quadratic, and exponential functions using graphs and/or tables to show that a quantity.
  • MAT-12.AR.F.13 Determine whether a linear, quadratic, polynomial, exponential, logarithmic, or trigonometric model fits the situation. Determine an appropriate mathematical model in context (with or without technology).
  • MAT-12.AR.F.14 Write arithmetic and geometric sequences both recursively and with an explicit formula and convert between the two forms. Use sequences to model situations.
  • MAT-12.AR.F.16 Extend right triangle trigonometry and apply knowledge of the unit circle to determine values of sine, cosine, and tangent for multiples of π /3, π/4 and π/6.
  • MAT-12.AR.F.17 Use the Pythagorean Identity sin²(θ) + cos²(θ) = 1 to find sin(θ), cos(θ), or tan(θ) given sin(θ), cos(θ), or tan(θ) and the quadrant of the angle.
  • MAT-12.AR.F.18 Explain how the unit circle in the coordinate plane enables the extension of trigonometric functions to all real numbers, interpreted as radian measures of angles traversed counterclockwise around the unit circle.
  • MAT-12.AR.F.19 Use the unit circle to express the values of sine, cosine, and tangent for π - x, π + x, and 2π - x in terms of their values for x, where x is any real number.
  • MAT-12.AR.F.20 Use the unit circle to explain the symmetry (odd and even) and the periodicity of trigonometric functions.
  • MAT-12.AR.F.21 Create a trigonometric function to model periodic phenomena.
  • MAT-12.AR.F.22 Restrict the domain of a trigonometric function to construct its inverse.
  • MAT-12.AR.F.23 Use inverse functions to solve trigonometric equations that arise in modeling contexts; evaluate the solutions and interpret them in context.
  • MAT-12.AR.F.24 Know and apply the addition and subtraction formulas for sine, cosine, and tangent to solve problems.
Logarithms
  • MAT-12.AR.F.06 Apply the inverse relationship between exponents and logarithms to solve problems.
  • MAT-12.AR.F.10 Graph functions expressed symbolically and show key features of the graph by hand in simple cases and using technology for more complicated cases.
  • MAT-12.AR.F.15 Use the properties of logarithms to express the solution to abᶜᵗ = d where a, c, and d are real numbers and b is a positive real number. Evaluate the logarithm using technology when appropriate.

MAT-12.AR.F.08

BPSS-MAT-NO logo 12th Grade (MAT) Targeted Standard  
  (AR) Algebraic Reasoning (Functions)
Learners will develop a foundational knowledge of functions and use them to model relationships between quantities.
MAT-12.AR.F.08 Use tables, graphs, verbal descriptions, and equations to interpret and sketch the key features of a function modeling the relationship between two quantities.

proficiency scale iconProficiency Scale

Progressions

Functional Relationships
  • MAT-08.AR.F.01 Defend whether a relation is a function from various representations using appropriate function language.
  • MAT-08.AR.F.02 Compare and contrast properties of two linear functions, each represented in a different way (algebraically, graphically, numerically in tables, and/or by descriptions).
  • MAT-08.AR.F.03 Compare and contrast linear and non-linear functions represented in different ways (algebraically, graphically, numerically in tables, and/or by descriptions).
  • MAT-08.AR.F.04 Model a linear relationship between two quantities by creating a table, graph, and equation. Interpret the rate of change and initial value of a linear function in terms of the situation it models.
  • MAT-08.AR.F.05 Describe qualitatively the functional relationship between two quantities by analyzing a graph, including where the function is constant, increasing, or decreasing; linear or nonlinear; and discrete or continuous. Create a graph that exhibits the qualitative features of a function described.
  • MAT-09.AR.F.01 Determine whether a relationship is a function given a table, graph, or words, identifying x as an element of the domain and f(x) as an element in the range. Determine the domain and range of a function in context.
  • MAT-09.AR.F.02 Use function notation, evaluate functions for inputs in their domains and interpret statements that use function notation in terms of context.
  • MAT-09.AR.F.03 Sketch key features (to include intercepts, maximums, minimums, and lines of symmetry, where applicable) of linear, exponential, and quadratic functions modeling the relationship between two quantities using tables, graphs, written descriptions, and equations.
  • MAT-09.AR.F.04 Relate the domain of a linear, quadratic, or exponential function to its graph and, where applicable, to the quantitative relationship it describes.
  • MAT-09.AR.F.05 Calculate and interpret the average rate of change of a linear, quadratic, or exponential function (presented algebraically or as a table) over a specified interval. Estimate the rate of change from a graph.
  • MAT-09.AR.F.06 Write a function defined by an expression in different but equivalent forms to reveal and explain the different properties of the function.
  • MAT-09.AR.F.07 Compare key features of two linear, exponential, or quadratic functions, each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions).
  • MAT-09.AR.F.08 Identify situations that can be modeled with linear, quadratic, and exponential functions.
  • MAT-09.AR.F.10 Find the inverse of a linear function and describe the relationship between the domain, range, and graph of the function and its inverse. Graph the inverse of a linear function.
  • MAT-09.AR.F.11 Interpret the parameters of a linear, quadratic, or exponential function in terms of context.
  • MAT-10.GM.02 Represent transformations in the plane. Describe transformations as functions that take points in the plane as inputs and give other points as outputs. Compare transformations that preserve distance and angle to those that do not (i.e., rigid versus non-rigid motion).
  • MAT-10.GM.26 Recognize that the radian measure of an angle is the ratio of the length of the arc to the length of the radius of a circle.
  • MAT-12.AR.F.01 Write a function that describes a relationship between two quantities.
  • MAT-12.AR.F.02 Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.
  • MAT-12.AR.F.03 Write a function defined by an expression in different but equivalent forms to reveal and explain the different properties of the function.
  • MAT-12.AR.F.04 Identify the effect of transformations on the graph of a function by replacing f(x) with af(x), f(bx), f(x - h), and f(x) + k, for specific values of a, h, and k (both positive and negative). Find the value of a, b, h, and k given the graph of the function. Recognize even and odd functions from their graphs and equations.
  • MAT-12.AR.F.05 Find inverse functions.
  • MAT-12.AR.F.06 Apply the inverse relationship between exponents and logarithms to solve problems.
  • MAT-12.AR.F.07 Compare key features of two functions, each represented in a different way (algebraically, graphically, numerically, in tables, or by verbal descriptions).
  • MAT-12.AR.F.08 Use tables, graphs, verbal discussions, and equations to interpret and sketch the key features of a function modeling the relationship between two quantities.
  • MAT-12.AR.F.09 Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.
  • MAT-12.AR.F.11 Analyze and graph functions expressed symbolically (by hand in simple cases and using technology for more complicated cases), identifying key features of the graph.
  • MAT-12.AR.F.12 Compare the end behavior of linear, quadratic, and exponential functions using graphs and/or tables to show that a quantity.
  • MAT-12.AR.F.13 Determine whether a linear, quadratic, polynomial, exponential, logarithmic, or trigonometric model fits the situation. Determine an appropriate mathematical model in context (with or without technology).
  • MAT-12.AR.F.14 Write arithmetic and geometric sequences both recursively and with an explicit formula and convert between the two forms. Use sequences to model situations.
  • MAT-12.AR.F.16 Extend right triangle trigonometry and apply knowledge of the unit circle to determine values of sine, cosine, and tangent for multiples of π /3, π/4 and π/6.
  • MAT-12.AR.F.17 Use the Pythagorean Identity sin²(θ) + cos²(θ) = 1 to find sin(θ), cos(θ), or tan(θ) given sin(θ), cos(θ), or tan(θ) and the quadrant of the angle.
  • MAT-12.AR.F.18 Explain how the unit circle in the coordinate plane enables the extension of trigonometric functions to all real numbers, interpreted as radian measures of angles traversed counterclockwise around the unit circle.
  • MAT-12.AR.F.19 Use the unit circle to express the values of sine, cosine, and tangent for π - x, π + x, and 2π - x in terms of their values for x, where x is any real number.
  • MAT-12.AR.F.20 Use the unit circle to explain the symmetry (odd and even) and the periodicity of trigonometric functions.
  • MAT-12.AR.F.21 Create a trigonometric function to model periodic phenomena.
  • MAT-12.AR.F.22 Restrict the domain of a trigonometric function to construct its inverse.
  • MAT-12.AR.F.23 Use inverse functions to solve trigonometric equations that arise in modeling contexts; evaluate the solutions and interpret them in context.
  • MAT-12.AR.F.24 Know and apply the addition and subtraction formulas for sine, cosine, and tangent to solve problems.
Graphing Functions
  • MAT-08.AR.F.05 Describe qualitatively the functional relationship between two quantities by analyzing a graph, including where the function is constant, increasing, or decreasing; linear or nonlinear; and discrete or continuous. Create a graph that exhibits the qualitative features of a function described.
  • MAT-09.AR.F.01 Determine whether a relationship is a function given a table, graph, or words, identifying x as an element of the domain and f(x) as an element in the range. Determine the domain and range of a function in context.
  • MAT-09.AR.F.03 Sketch key features (to include intercepts, maximums, minimums, and lines of symmetry, where applicable) of linear, exponential, and quadratic functions modeling the relationship between two quantities using tables, graphs, written descriptions, and equations.
  • MAT-09.AR.F.09 Identify the effect of transformations on the graph of a linear, absolute value, or quadratic function by replacing f(x) with af(x), f(x - h), and f(x) + k, for specific values of a, h, and k (both positive and negative). Find the value of a, h, and k given the graph of the function.
  • MAT-09.AR.F.10 Find the inverse of a linear function and describe the relationship between the domain, range, and graph of the function and its inverse. Graph the inverse of a linear function.
  • MAT-09.AR.F.12 Identify, using graphs or tables, the solution(s) to linear or exponential functions f(x) = g(x) as xvalues that result in equivalent y-values.
  • MAT-12.AR.14 Identify zeros of polynomials when suitable factorizations are available. Use the zeros to construct a rough graph of the function defined by the polynomial.
  • MAT-12.AR.16 Identify, using graphs, technology, tables, or successive approximations, that the solution(s) to the equation f(x) = g(x) is the x-value(s) that result in the y-values of f(x) and g(x) being the same.
  • MAT-12.AR.F.04 Identify the effect of transformations on the graph of a function by replacing f(x) with af(x), f(bx), f(x - h), and f(x) + k, for specific values of a, h, and k (both positive and negative). Find the values of a, b, h, and k given the graph of the function. Recognize even and odd functions from their graphs and equations.
  • MAT-12.AR.F.08 Use tables, graphs, verbal descriptions, and equations to interpret and sketch the key features of a function modeling the relationship between two quantities.
  • MAT-12.AR.F.09 Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.
  • MAT-12.AR.F.10 Graph functions expressed symbolically and show key features of the graph by hand in simple cases and using technology for more complicated cases.
  • MAT-12.AR.F.11 Analyze and graph functions expressed symbolically (by hand in simple cases and using technology for more complicated cases), identifying key features of the graph.
  • MAT-12.AR.F.12 Compare the end behavior of linear, quadratic, and exponential functions using graphs and/or tables to show that a quantity increasing exponentially eventually exceeds a quantity increasing as a linear or quadratic function

MAT-12.AR.F.09

BPSS-MAT-NO logo 12th Grade (MAT) Targeted Standard  
  (AR) Algebraic Reasoning (Functions)
Learners will develop a foundational knowledge of functions and use them to model relationships between quantities.
MAT-12.AR.F.09 Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.

proficiency scale iconProficiency Scale

Progressions

Functional Relationships
  • MAT-08.AR.F.01 Defend whether a relation is a function from various representations using appropriate function language.
  • MAT-08.AR.F.02 Compare and contrast properties of two linear functions, each represented in a different way (algebraically, graphically, numerically in tables, and/or by descriptions).
  • MAT-08.AR.F.03 Compare and contrast linear and non-linear functions represented in different ways (algebraically, graphically, numerically in tables, and/or by descriptions).
  • MAT-08.AR.F.04 Model a linear relationship between two quantities by creating a table, graph, and equation. Interpret the rate of change and initial value of a linear function in terms of the situation it models.
  • MAT-08.AR.F.05 Describe qualitatively the functional relationship between two quantities by analyzing a graph, including where the function is constant, increasing, or decreasing; linear or nonlinear; and discrete or continuous. Create a graph that exhibits the qualitative features of a function described.
  • MAT-09.AR.F.01 Determine whether a relationship is a function given a table, graph, or words, identifying x as an element of the domain and f(x) as an element in the range. Determine the domain and range of a function in context.
  • MAT-09.AR.F.02 Use function notation, evaluate functions for inputs in their domains and interpret statements that use function notation in terms of context.
  • MAT-09.AR.F.03 Sketch key features (to include intercepts, maximums, minimums, and lines of symmetry, where applicable) of linear, exponential, and quadratic functions modeling the relationship between two quantities using tables, graphs, written descriptions, and equations.
  • MAT-09.AR.F.04 Relate the domain of a linear, quadratic, or exponential function to its graph and, where applicable, to the quantitative relationship it describes.
  • MAT-09.AR.F.05 Calculate and interpret the average rate of change of a linear, quadratic, or exponential function (presented algebraically or as a table) over a specified interval. Estimate the rate of change from a graph.
  • MAT-09.AR.F.06 Write a function defined by an expression in different but equivalent forms to reveal and explain the different properties of the function.
  • MAT-09.AR.F.07 Compare key features of two linear, exponential, or quadratic functions, each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions).
  • MAT-09.AR.F.08 Identify situations that can be modeled with linear, quadratic, and exponential functions.
  • MAT-09.AR.F.10 Find the inverse of a linear function and describe the relationship between the domain, range, and graph of the function and its inverse. Graph the inverse of a linear function.
  • MAT-09.AR.F.11 Interpret the parameters of a linear, quadratic, or exponential function in terms of context.
  • MAT-10.GM.02 Represent transformations in the plane. Describe transformations as functions that take points in the plane as inputs and give other points as outputs. Compare transformations that preserve distance and angle to those that do not (i.e., rigid versus non-rigid motion).
  • MAT-10.GM.26 Recognize that the radian measure of an angle is the ratio of the length of the arc to the length of the radius of a circle.
  • MAT-12.AR.F.01 Write a function that describes a relationship between two quantities.
  • MAT-12.AR.F.02 Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.
  • MAT-12.AR.F.03 Write a function defined by an expression in different but equivalent forms to reveal and explain the different properties of the function.
  • MAT-12.AR.F.04 Identify the effect of transformations on the graph of a function by replacing f(x) with af(x), f(bx), f(x - h), and f(x) + k, for specific values of a, h, and k (both positive and negative). Find the value of a, b, h, and k given the graph of the function. Recognize even and odd functions from their graphs and equations.
  • MAT-12.AR.F.05 Find inverse functions.
  • MAT-12.AR.F.06 Apply the inverse relationship between exponents and logarithms to solve problems.
  • MAT-12.AR.F.07 Compare key features of two functions, each represented in a different way (algebraically, graphically, numerically, in tables, or by verbal descriptions).
  • MAT-12.AR.F.08 Use tables, graphs, verbal discussions, and equations to interpret and sketch the key features of a function modeling the relationship between two quantities.
  • MAT-12.AR.F.09 Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.
  • MAT-12.AR.F.11 Analyze and graph functions expressed symbolically (by hand in simple cases and using technology for more complicated cases), identifying key features of the graph.
  • MAT-12.AR.F.12 Compare the end behavior of linear, quadratic, and exponential functions using graphs and/or tables to show that a quantity.
  • MAT-12.AR.F.13 Determine whether a linear, quadratic, polynomial, exponential, logarithmic, or trigonometric model fits the situation. Determine an appropriate mathematical model in context (with or without technology).
  • MAT-12.AR.F.14 Write arithmetic and geometric sequences both recursively and with an explicit formula and convert between the two forms. Use sequences to model situations.
  • MAT-12.AR.F.16 Extend right triangle trigonometry and apply knowledge of the unit circle to determine values of sine, cosine, and tangent for multiples of π /3, π/4 and π/6.
  • MAT-12.AR.F.17 Use the Pythagorean Identity sin²(θ) + cos²(θ) = 1 to find sin(θ), cos(θ), or tan(θ) given sin(θ), cos(θ), or tan(θ) and the quadrant of the angle.
  • MAT-12.AR.F.18 Explain how the unit circle in the coordinate plane enables the extension of trigonometric functions to all real numbers, interpreted as radian measures of angles traversed counterclockwise around the unit circle.
  • MAT-12.AR.F.19 Use the unit circle to express the values of sine, cosine, and tangent for π - x, π + x, and 2π - x in terms of their values for x, where x is any real number.
  • MAT-12.AR.F.20 Use the unit circle to explain the symmetry (odd and even) and the periodicity of trigonometric functions.
  • MAT-12.AR.F.21 Create a trigonometric function to model periodic phenomena.
  • MAT-12.AR.F.22 Restrict the domain of a trigonometric function to construct its inverse.
  • MAT-12.AR.F.23 Use inverse functions to solve trigonometric equations that arise in modeling contexts; evaluate the solutions and interpret them in context.
  • MAT-12.AR.F.24 Know and apply the addition and subtraction formulas for sine, cosine, and tangent to solve problems.
Graphing Functions
  • MAT-08.AR.F.05 Describe qualitatively the functional relationship between two quantities by analyzing a graph, including where the function is constant, increasing, or decreasing; linear or nonlinear; and discrete or continuous. Create a graph that exhibits the qualitative features of a function described.
  • MAT-09.AR.F.01 Determine whether a relationship is a function given a table, graph, or words, identifying x as an element of the domain and f(x) as an element in the range. Determine the domain and range of a function in context.
  • MAT-09.AR.F.03 Sketch key features (to include intercepts, maximums, minimums, and lines of symmetry, where applicable) of linear, exponential, and quadratic functions modeling the relationship between two quantities using tables, graphs, written descriptions, and equations.
  • MAT-09.AR.F.09 Identify the effect of transformations on the graph of a linear, absolute value, or quadratic function by replacing f(x) with af(x), f(x - h), and f(x) + k, for specific values of a, h, and k (both positive and negative). Find the value of a, h, and k given the graph of the function.
  • MAT-09.AR.F.10 Find the inverse of a linear function and describe the relationship between the domain, range, and graph of the function and its inverse. Graph the inverse of a linear function.
  • MAT-09.AR.F.12 Identify, using graphs or tables, the solution(s) to linear or exponential functions f(x) = g(x) as xvalues that result in equivalent y-values.
  • MAT-12.AR.14 Identify zeros of polynomials when suitable factorizations are available. Use the zeros to construct a rough graph of the function defined by the polynomial.
  • MAT-12.AR.16 Identify, using graphs, technology, tables, or successive approximations, that the solution(s) to the equation f(x) = g(x) is the x-value(s) that result in the y-values of f(x) and g(x) being the same.
  • MAT-12.AR.F.04 Identify the effect of transformations on the graph of a function by replacing f(x) with af(x), f(bx), f(x - h), and f(x) + k, for specific values of a, h, and k (both positive and negative). Find the values of a, b, h, and k given the graph of the function. Recognize even and odd functions from their graphs and equations.
  • MAT-12.AR.F.08 Use tables, graphs, verbal descriptions, and equations to interpret and sketch the key features of a function modeling the relationship between two quantities.
  • MAT-12.AR.F.09 Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.
  • MAT-12.AR.F.10 Graph functions expressed symbolically and show key features of the graph by hand in simple cases and using technology for more complicated cases.
  • MAT-12.AR.F.11 Analyze and graph functions expressed symbolically (by hand in simple cases and using technology for more complicated cases), identifying key features of the graph.
  • MAT-12.AR.F.12 Compare the end behavior of linear, quadratic, and exponential functions using graphs and/or tables to show that a quantity increasing exponentially eventually exceeds a quantity increasing as a linear or quadratic function

MAT-12.AR.F.10

BPSS-MAT-NO logo 12th Grade (MAT) Targeted Standard  
  (AR) Algebraic Reasoning (Functions)
Learners will develop a foundational knowledge of functions and use them to model relationships between quantities.
MAT-12.AR.F.10 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.
  • Graph square root, cube root, piece wise defined, step, and absolute value functions.
  • Graph polynomial functions, identifying zeros when suitable factorizations are available and showing end behavior.
  • Graph exponential and logarithmic functions, showing intercepts and end behavior.
  • Graph f(x) = sin x and f(x) = cos x as representations of periodic phenomena.

proficiency scale iconProficiency Scale

Progressions

Graphing Functions
  • MAT-08.AR.F.05 Describe qualitatively the functional relationship between two quantities by analyzing a graph, including where the function is constant, increasing, or decreasing; linear or nonlinear; and discrete or continuous. Create a graph that exhibits the qualitative features of a function described.
  • MAT-09.AR.F.01 Determine whether a relationship is a function given a table, graph, or words, identifying x as an element of the domain and f(x) as an element in the range. Determine the domain and range of a function in context.
  • MAT-09.AR.F.03 Sketch key features (to include intercepts, maximums, minimums, and lines of symmetry, where applicable) of linear, exponential, and quadratic functions modeling the relationship between two quantities using tables, graphs, written descriptions, and equations.
  • MAT-09.AR.F.09 Identify the effect of transformations on the graph of a linear, absolute value, or quadratic function by replacing f(x) with af(x), f(x - h), and f(x) + k, for specific values of a, h, and k (both positive and negative). Find the value of a, h, and k given the graph of the function.
  • MAT-09.AR.F.10 Find the inverse of a linear function and describe the relationship between the domain, range, and graph of the function and its inverse. Graph the inverse of a linear function.
  • MAT-09.AR.F.12 Identify, using graphs or tables, the solution(s) to linear or exponential functions f(x) = g(x) as xvalues that result in equivalent y-values.
  • MAT-12.AR.14 Identify zeros of polynomials when suitable factorizations are available. Use the zeros to construct a rough graph of the function defined by the polynomial.
  • MAT-12.AR.16 Identify, using graphs, technology, tables, or successive approximations, that the solution(s) to the equation f(x) = g(x) is the x-value(s) that result in the y-values of f(x) and g(x) being the same.
  • MAT-12.AR.F.04 Identify the effect of transformations on the graph of a function by replacing f(x) with af(x), f(bx), f(x - h), and f(x) + k, for specific values of a, h, and k (both positive and negative). Find the values of a, b, h, and k given the graph of the function. Recognize even and odd functions from their graphs and equations.
  • MAT-12.AR.F.08 Use tables, graphs, verbal descriptions, and equations to interpret and sketch the key features of a function modeling the relationship between two quantities.
  • MAT-12.AR.F.09 Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.
  • MAT-12.AR.F.10 Graph functions expressed symbolically and show key features of the graph by hand in simple cases and using technology for more complicated cases.
  • MAT-12.AR.F.11 Analyze and graph functions expressed symbolically (by hand in simple cases and using technology for more complicated cases), identifying key features of the graph.
  • MAT-12.AR.F.12 Compare the end behavior of linear, quadratic, and exponential functions using graphs and/or tables to show that a quantity increasing exponentially eventually exceeds a quantity increasing as a linear or quadratic function
Logarithms
  • MAT-12.AR.F.06 Apply the inverse relationship between exponents and logarithms to solve problems.
  • MAT-12.AR.F.10 Graph functions expressed symbolically and show key features of the graph by hand in simple cases and using technology for more complicated cases.
  • MAT-12.AR.F.15 Use the properties of logarithms to express the solution to abᶜᵗ = d where a, c, and d are real numbers and b is a positive real number. Evaluate the logarithm using technology when appropriate.

MAT-12.NO

BPSS-MAT-GM logo  MAT-12.NO Domain 
BPSS-MAT-NO logo

(NO) Number and Operations 

Learners will develop a foundational understanding of the number system, operations, and computational fluency to create connections and solve problems within and across concepts.


Sub-Categories

  • (CC) Counting and Cardinality 
    Learners will understand the relationship between numerical symbols, names, quantities, and counting sequences.
  • (NBT) Number Base Ten 
    Learners will understand the place value structure of the base-ten number system and represent, compare, and perform operations with multi-digit whole numbers and decimals.
  • (NF) Number Fractions 
    Learners will understand fractions and equivalency to represent, compare, and perform operations of fractions and decimals.
  • (NS) Number System 
    Learners will expand their knowledge of the number system to create connections and solve problems within and across concepts.
  • (O) Operations
    Learners will expand their computational fluency to create connections and solve problems within and across concepts.

Calculation Method for Domains

Domains are larger groups of related standards. The Domain Grade is a calculation of all the related standards. Click on the standard name below each Domain to access the learning targets and rubrics/ proficiency scales for individual standards within the domain.


MAT-12.NO.02

BPSS-MAT-NO logo 12th Grade (MAT) Targeted Standard  
 (NO) Number and Operations 
Learners will develop a foundational understanding of the number system, operations, and computational fluency to create connections and solve problems within and across concepts.
MAT-12.NO.02 Perform operations on complex radical expressions and simplify radicals to write equivalent expressions.

proficiency scale iconProficiency Scale

Progressions

Exponents

  • MAT-05.NO.NBT.07 Explain patterns in the number of zeros of the product when multiplying a number by powers of 10. Explain patterns in the placement of the decimal point when a decimal is multiplied or divided by a power of 10. Use whole-number exponents to denote powers of 10.
  • MAT-06.AR.EE.01 Write, read, and evaluate numerical expressions, including expressions with whole number exponents and grouping symbols.
  • MAT-08.AR.EE.01 Explain the relationship between repeated multiplication and the properties of integer exponents. Apply a single exponent property to generate equivalent numeric and algebraic expressions that include numerical coefficients.
  • MAT-09.NO.01 Explain how the definition of rational exponents follows from extending the properties of integer exponents; rewrite simple expressions involving radicals and rational exponents using the properties of exponents.
  • MAT-09.NO.02 Perform basic operations on simple radical expressions to write a simplified equivalent expression.
  • MAT-09.AR.06 Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear, quadratic, and exponential functions.
  • MAT-09.AR.04 Create linear and exponential equations in two or more variables to represent relationships between quantities. Graph equations on coordinate axes with proper labels and scales.
  • MAT-09.AR.F.06 Write a function defined by an expression in different but equivalent forms to reveal and explain the different properties of the function.
  • MAT-0.AR.F.08 Identify situations that can be modeled with linear, quadratic, and exponential functions. Justify the most appropriate model for a situation based on the rate of change over equal intervals. Include situations in which a quantity grows or decays. 
  • MAT-12.NO.01 Rewrite complex expressions involving radicals and rational exponents using the properties of exponents.
  • MAT-12.NO.02 Perform basic operations on advanced radicals and simplify radicals to write equivalent expressions.
  • MAT-12.AR.07 Create equations and inequalities and use them to solve problems. Include equations arising from linear and quadratic functions and simple rational and exponential functions.
  • MAT-12.AR.08 Create equations in two or more variables to represent relationships between quantities. Graph equations on coordinate axes with appropriate labels and scales.
  • MAT-12.AR.F.03 Write a function defined by an expression in different but equivalent forms to reveal and explain the different properties of the function.
  • MAT-12.AR.F.06 Apply the inverse relationship between exponents and logarithms to solve problems.
  • MAT-12.AR.F.15 Use properties of logarithms to express the solution to abct = d where a, c, and d are real numbers and b is a positive real number. Evaluate the logarithm using technology when appropriate.
Equivalent Expressions
  • MAT-06.AR.EE.03 Identify when two expressions are equivalent. Apply the properties of operations to generate equivalent expressions.
  • MAT-07.AR.EE.01 Apply the properties of operations as strategies to add, subtract, factor, and expand linear expressions involving variables, integers, and/or non-negative fractions and decimals with an emphasis on writing equivalent expressions.
  • MAT-08.AR.EE.01 Explain the relationship between repeated multiplication and the properties of integer exponents. Apply a single exponent property to generate equivalent numeric and algebraic expressions that include numerical coefficients.
  • MAT-09.NO.02 Perform basic operations on simple radical expressions to write a simplified equivalent expression.
  • MAT-09.AR.01 Use the structure of an expression (i.e., quadratic and exponential) to identify ways to rewrite it.
  • MAT-09.AR.02 Rearrange formulas to isolate a quantity or variable(s) of interest using the same reasoning as in solving equations.
  • MAT-09.AR.07 Rearrange multi-variable formulas to highlight a quantity of interest.
  • MAT-09.AR.F.06 Write a function defined by an expression in different but equivalent forms to reveal and explain the different properties of the function.
  • MAT-12.NO.02 Perform operations on complex radical expressions to write a simplified equivalent expression.
  • MAT-12.AR.01 Rearrange multi-variable formulas to highlight a quantity of interest.
  • MAT-12.AR.02 Use the structure of an expression (to extend to polynomial and rational expressions) to identify ways to rewrite it.
  • MAT-12.AR.04 Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.
  • MAT-12.AR.05 Add, subtract, multiply, and divide rational expressions. Understand that rational expressions form a system analogous to rational numbers, closed under addition, subtraction, multiplication, and division by a nonzero rational expression.
  • MAT-12.AR.F.03 Write a function defined by an expression in different but equivalent forms to reveal and explain the different properties of the function.
  • MAT-12.GM.01 Write the equation of a conic section given its special features. Convert between the standard form and general form equations of conic sections.
  • MAT-12.GM.02 Identify key features of a conic section given its equation. Apply properties of conic sections in context.
  • MAT-12.NO.12 Extend polynomial identities to the complex numbers.

MAT-12.NO.09

BPSS-MAT-NO logo 12th Grade (MAT) Targeted Standard  
 (NO) Number and Operations 
Learners will develop a foundational understanding of the number system, operations, and computational fluency to create connections and solve problems within and across concepts.
MAT-12.NO.09 Apply the Fundamental Theorem of Algebra to determine the number of zeros for polynomial functions. Find all solutions to a polynomial equation.

proficiency scale iconProficiency Scale

Progressions

Complex Numbers

  • MAT-12.NO.06 Know there is a complex number i such that i² = -1, and every complex number has the form of a + bi with a and b real. Understand the hierarchal relationships among subsets of the complex number system.
  • MAT-12.NO.07 Use the definition i 2 = -1 and the commutative, associative, and distributive properties to add, subtract, and multiply complex numbers.
  • MAT-12.NO.08 Use conjugates to find quotients of complex numbers.
  • MAT-12.NO.09 Apply the Fundamental Theorem of Algebra to determine the number of zeros for polynomial functions. Find all solutions to a polynomial equation.
  • MAT-12.AR.11 Solve quadratic equations with real coefficients that have solutions of the form a+bi and a-bi.
  • MAT-12.NO.10 Represent complex numbers on the complex plane in rectangular, trigonometric, and polar forms. Find the modulus (absolute value) of a complex number. Explain why the rectangular, trigonometric, and polar forms of a given complex number represent the same number.
  • MAT-12.NO.11 Represent addition, subtraction, multiplication, conjugation, powers, and roots of complex numbers geometrically on the complex and/or polar plane; use properties of this representation for computation.
  • MAT-12.NO.12 Extend polynomial identities to the complex numbers.
  • MAT-12.NO.13 Apply the Fundamental Theorem of Algebra to find all roots of a polynomial equation and determine the nature (i.e., integer, rational, irrational, real, complex) of the roots.
Quadratic Equations
  • MAT-09.AR.10 Solve quadratic equations in one variable by inspection (e.g., for x2 = 49) taking square roots, the quadratic formula, and factoring, as appropriate to the initial form of the equation.
  • MAT-12.NO.09 Apply the Fundamental Theorem of Algebra to determine the number of zeros for polynomial functions. Find all solutions to a polynomial equation.
  • MAT-12.AR.07 Create equations and inequalities and use them to solve problems. Include equations arising from linear and quadratic functions and simple rational and exponential functions.
  • MAT-12.AR.10 Derive the quadratic formula from the form 0 = ax2 + bx + c.
  • MAT-12.AR.11 Solve quadratic equations with real coefficients that have solutions of the form a + bi and a - bi.
  • MAT-12.AR.14 Identify zeros of polynomials when suitable factorizations are available. Use the zeros to construct a rough graph of the function defined by the polynomial.
  • MAT-12.AR.17 Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically.