All categories

Page: (Previous)   1  2  3
  ALL

PRIORITIZED STANDARDS

SCI-MS.ESS2.06

Earth Space Science Logo8th Grade (SCI) Earth Space Science Standards
[ESS2] Earth's Systems

SCI-MS.ESS2.06 Develop and use a model to describe how unequal heating and rotation of the Earth cause patterns of atmospheric and oceanic circulation that determine regional climates.

Clarification Statement: Emphasis is on how patterns vary by latitude, altitude, and geographic land distribution. Emphasis of atmospheric circulation is on the sunlight-driven latitudinal banding, the Coriolis effect, and resulting prevailing winds; emphasis of ocean circulation is on the transfer of heat by the global ocean convection cycle, which is constrained by the Coriolis effect and the outlines of continents. Examples of models can be diagrams, maps and globes, or digital representations.
Disciplinary Core Ideas
ESS2.C: The Roles of Water in Earth's Surface Processes Variations in density due to variations in temperature and salinity drive a global pattern of interconnected ocean currents.
ESS2.D: Weather and Climate Weather and climate are influenced by interactions involving sunlight, the ocean, the atmosphere, ice, landforms, and living things. These interactions vary with latitude, altitude, and local and regional geography, all of which can affect oceanic and atmospheric flow patterns.


Student Learning Targets:

Knowledge Targets

  • I can label the relative pressure, latitudes, pressure belts, direction, and the name of the global winds.
  • I can draw and label local winds (i.e. land breeze and sea breeze).

Reasoning Targets

  • I can explain why a land breeze occurs at night and sea breeze occurs during the day.
  • I can explain why there is little or no wind at the pressure belts.

Skills (Performance) Targets

  • I can

Product Targets

  • I can

Proficiency Scale

The Student can ...
1 Beginning
... with help, demonstrate a partial understanding of some of the simpler details and processes (Score 2.0 content) and some of the more complex ideas and processes (Score 3.0 content).
  • descriptors
2 Developing
... demonstrate no major errors or omissions regarding the simpler details and processes but exhibits major errors or omissions regarding the more complex ideas and processes (Score 3.0 content).
  • label the relative pressure, latitudes, pressure belts, direction, and the name of the global winds.
  • draw and label local winds.
3 Proficient
“The Standard.”
... demonstrate no major errors or omissions regarding any of the information and processes that were end of instruction expectations.
  • explain why a land breeze occurs at night and sea breeze occurs during the day.
  • explain why there is little or no wind at the pressure belts.
4 Advanced
... demonstrate in-depth inferences and applications regarding more complex material that go beyond end of instruction expectations.
  • descriptors

Resources

Vocabulary

  • words
  • list

Websites

  • Title of website with a URL to open in a new window

SCI-MS.ESS3

BPSS-SCI logo DCI Earth Space Science ESS3

Earth and Human Activity

Performance Expectations

ESS3 help students formulate an answer to questions such as:

  • How is the availability of needed natural resources related to naturally occurring processes?
  • How can natural hazards be predicted?
  • How do human activities affect Earth systems?
  • How do we know our global climate is changing?

The ESS3 Disciplinary Core Idea is broken down into four sub - ideas: natural resources, natural hazards, human impact on Earth systems, and global climate change. Students understand the ways that human activities impacts Earth’s other systems. Students use many different practices to understand the significant and complex issues surrounding human uses of land, energy, mineral, and water resources and the resulting impacts of their development.
In the ESS 3 performance expectations, students are expected to demonstrate proficiency in asking questions, developing and using models, analyzing and interpreting data, constructing explanations and designing solutions and engaging in argument ; and to use these practices to demonstrate understanding of the core ideas.

Calculation Method for DCI

Disciplinary Core Ideas are larger groups of related Performance Expectations. So the Disciplinary Core Idea Grade is a calculation of all the related Performance Expectations. So click on the Performance Expectation name below each Disciplinary Core Idea to access the learning targets and proficiency scales for each Disciplinary Core Idea's related Performance Expectations.


SCI-MS.ESS3.02

Earth Space Science Logo8th Grade (SCI) Earth Space Science Standards
[ESS3] Earth and Human Activity

SCI-MS.ESS3.02 Analyze and interpret data on natural hazards to forecast future catastrophic events that necessitate the development of technologies to mitigate their effects.

Clarification Statement: Emphasis is on how some natural hazards, such as volcanic eruptions and severe weather, are preceded by phenomena that allow for reliable predictions, but others, such as earthquakes, occur suddenly and with no notice, and thus are not yet predictable. Examples of natural hazards can be taken from interior processes (such as earthquakes and volcanic eruptions), surface processes (such as mass wasting and tsunamis), or severe weather events (such as hurricanes, tornadoes, and floods). Examples of data can include the locations, magnitudes, and frequencies of the natural hazards. Examples of technologies can be global (such as satellite systems to monitor hurricanes or forest fires) or local (such as building basements in tornado-prone regions or reservoirs to mitigate droughts).
Disciplinary Core Ideas
ESS3.B: Natural Hazards Mapping the history of natural hazards in a region, combined with an understanding of related geologic forces can help forecast the locations and likelihoods of future events.


Student Learning Targets:

Knowledge Targets

  • I can identify the three types of faults and state the strength of the earthquake produced. (Earthquakes)
  • I can differentiate between a p-wave and a s-wave. (Earthquakes)
  • I can identify the three different types of volcanoes based on the type of eruption. (Volcanoes)
  • I can identify different methods of predicting volcanic eruptions. (Volcanoes)
  • I can explain the the tectonic activity present at the Ring of Fire and Mid-Atlantic Ridge. (Volcanoes)

Reasoning Targets

  • I can explain how energy is stored and then later released during an earthquake. (Earthquakes)
  • I can explain how scientists use the gap hypothesis to predict the location and strength of future earthquakes. (Earthquakes)
  • I can explain how the composition of magma (silica content, ability to trap gases) influences the type of eruption. (Volcanoes)
  • Skills (Performance) Targets
  • I can use a seismogram and the S-P time method to determine the distance from the epicenter. (Earthquakes)

Skills (Performance) Targets

  • I can

Product Targets

  • I can

Proficiency Scale

The Student can ...
1 Beginning
... with help, demonstrate a partial understanding of some of the simpler details and processes (Score 2.0 content) and some of the more complex ideas and processes (Score 3.0 content).
  • descriptors
2 Developing
... demonstrate no major errors or omissions regarding the simpler details and processes but exhibits major errors or omissions regarding the more complex ideas and processes (Score 3.0 content).
  • identify the three types of faults and state the strength of the earthquake produced. (Earthquakes)
  • differentiate between a p-wave and s-wave. (Earthquakes)
  • identify the three types of volcanoes based on the type of eruption. (Volcanoes)
  • identify different methods of predicting volcanic eruptions. (Volcanoes)
3 Proficient
“The Standard.”
... demonstrate no major errors or omissions regarding any of the information and processes that were end of instruction expectations.
  • explain how energy is stored and then later released during an earthquake. (Earthquakes)
  • use a seismogram and the S-P time method to determine the distance from the epicenter. (Earthquakes)
  • explain how scientists use the gap hypothesis to predict the location and strength of future earthquakes. (Earthquakes)
  • explain how the composition of magma (silica content, ability to trap gases) influences the type of eruption. (Volcanoes)
  • explain the tectonic activity present at the Ring of Fire and Mid-Atlantic Ridge. (Volcanoes)
4 Advanced
... demonstrate in-depth inferences and applications regarding more complex material that go beyond end of instruction expectations.
  • descriptors

Resources

Vocabulary

  • words
  • list

Websites

  • Title of website with a URL to open in a new window

STANDARD 2: SCIENCE INQUIRY

SCI-08.2

Under Development
Standards are larger groups of related benchmarks. So the Standard Score is a calculation of all the related benchmarks. So click on the benchmark name below each Standard to access the learning targets and proficiency scales for each Standard's related benchmarks.

Standard 2:

Science Inquiry

In the future this will contain narratives and other information about the Standard.


SCI-08.2.04

Science Targeted Benchmarks

Standard 2: Science Inquiry

SCI-08.2.04 Design and conduct a scientific investigation (e.g., making systematic observations, making accurate measurements, identifying and controlling variables)

Student Learning Targets:

Knowledge Targets

  • I can identify the steps of the scientific method.
  • I can record accurate measurements using the SI system.
  • I can identify independent and dependent variables.

Reasoning Targets

  • I can convert metric measurements to a smaller or larger unit.
  • I can form a hypothesis using if, then, because.

Skills (Performance) Targets

  • I can conduct a scientific investigation.
  • I can interpret charts and graphs.
  • I can create charts and graphs.

Product Targets

  • I can design a controlled scientific investigation.

Proficiency Scale

Score   Description Sample Activity
4.0 In addition to Score 3.0, the student demonstrates in-depth inferences and applications regarding more complex material that go beyond end of instruction expectations. -
  3.5 In addition to Score 3.0 performance, the student demonstrates in-depth inferences and applications regarding the more complex content with partial success.
3.0

“The Standard.” The student demonstrates no major errors or omissions regarding any of the information and processes that were end of instruction expectations.

The student can:

  • design a controlled scientific investigation.
  • conduct a scientific investigation.
  • interpret charts and graphs.
  • convert metric measurements to a smaller or larger unit.
-
  2.5 The student demonstrates no major errors or omissions regarding the simpler details and processes (Score 2.0 content) and partial knowledge of the more complex ideas and processes (Score 3.0 content).
2.0

The student demonstrates no major errors or omissions regarding the simpler details and processes but exhibits major errors or omissions regarding the more complex ideas and processes (Score 3.0 content).

The student can:

  • form a hypothesis using if, then, because.
  • identify the steps of the scientific method.
  • record accurate measurements using the SI system.
  • identify independent and dependent variables.
  • create charts and graphs.
-
  1.5 The student demonstrates partial knowledge of the simpler details and processes (Score 2.0 content) but exhibits major errors or omissions regarding the more complex ideas and procedures (Score 3.0 content).
1.0 With help, the student demonstrates a partial understanding of some of the simpler details and processes (Score 2.0 content) and some of the more complex ideas and processes (Score 3.0 content). -
  0.5 With help, the student demonstrates a partial understanding of some of the simpler details and processes (Score 2.0 content) but not the more complex ideas and processes (Score 3.0 content).

Resources

Websites

Vocabulary



Page: (Previous)   1  2  3
  ALL