ALL

Page: (Previous)   1  2  3
ALL

### M

#### MAT-10.GM.28

 10th Grade (MAT) Targeted Standard     (GM) Geometry and Measurement Learners will use visualization, spatial reasoning, geometric modeling, and measurement to investigate the characteristics of figures, perform transformations, and construct logical arguments.

## Progressions

Coordinate Plane

• MAT-03.GM.G.01 In two-dimensional shapes, identify lines, angles (right, acute, obtuse), and perpendicular and parallel lines.
• MAT-05.GM.G.02 Identify the x-coordinate and y-coordinate to graph and name points in the first quadrant of the coordinate plane.
• MAT-05.GM.G.03 Form ordered pairs and graph points in the first quadrant of the coordinate plane to solve authentic word problems.
• MAT-06.GM.GF.01 Identify and position ordered pairs of rational numbers in all four quadrants of a coordinate plane.
• MAT-06.GM.GF.02 Draw polygons in the coordinate plane given coordinates for vertices. Determine the length of a side joining points with the same first or second coordinate, including authentic problems.
• MAT-10.GM.27 Develop and verify the slope criteria for parallel and perpendicular lines. Apply the slope criteria for parallel and perpendicular lines to solve geometric problems using algebra.
• MAT-10.GM.28 Verify simple geometric theorems algebraically using coordinates. Verify algebraically, using coordinates, that a given set of points produces a particular type of triangle or quadrilateral.
• MAT-10.GM.29 Determine the midpoint or endpoint of a line segment using coordinates. (+) Find the point on a directed line segment between two given points that partitions the segments in a given ratio.
• MAT-12.NO.10 Represent complex numbers on the complex plane in rectangular, trigonometric, and polar forms. Find the modulus (absolute value) of a complex number. Explain why the rectangular, trigonometric, and polar forms of a given complex number represent the same number.
• MAT-12.NO.11 Represent addition, subtraction, multiplication, conjugation, powers, and roots of complex numbers geometrically on the complex and/or polar plane; use properties of this representation for computation.
• MAT-12.NO.14 Recognize vector quantities as having both magnitude and direction, writing them in polar form.
• MAT-12.NO.15 Find the components of a vector by subtracting the coordinates of an initial point from the coordinates of a terminal point.
• MAT-12.NO.16 Solve problems involving magnitude and direction that can be represented by vectors.
• MAT-12.NO.17 Add and subtract vectors.
• MAT-12.NO.18 Multiply a vector by a scalar.
• MAT-12.AR.F.18 Explain how the unit circle in the coordinate plane enables the extension of trigonometric functions to all real numbers, interpreted as radian measures of angles traversed counterclockwise around the unit circle.
• MAT-12.AR.F.19 Use the unit circle to express the values of sine, cosine, and tangent for π - x, π + x, and 2π - x in terms of their values for x, where x is any real number.

#### MAT-10.GM.29

 10th Grade (MAT) Targeted Standard     (GM) Geometry and Measurement Learners will use visualization, spatial reasoning, geometric modeling, and measurement to investigate the characteristics of figures, perform transformations, and construct logical arguments.

## Progressions

Ratio and Proportional Relationships
• MAT-06.AR.RP.01 Describe the concept of a ratio relationship between two quantities using ratio language and visual models.
• MAT-06.AR.RP.03 Make and use tables of equivalent ratios, tape diagrams, double number line diagrams, and equations to reason about ratios, rates, and unit rates.
• MAT-07.AR.RP.02 Analyze the relationships between the dependent and independent variables of a proportional relationship using graphs and tables. Explain what a point (x, y) on the graph of a proportional relationship means in terms of the situation, with special attention to the points (0, 0) and (1, k) where k is the unit rate.
• MAT-07.AR.RP.03 Identify the constant of proportionality in tables, graphs, equations, diagrams, and verbal descriptions of proportional relationships. Represent proportional relationships by an equation of the form y = kx, where k is the constant of proportionality, and describe the meaning of each variable (y, k, x) in the context of the situation.
• MAT-07.AR.RP.04 Use proportional relationships to solve multi-step problems involving ratios, percents, and scale drawings of geometric figures, including authentic problems.
• MAT-08.AR.EE.03 Explain the characteristics of a linear relationship, including identifying the slope and yintercept in tables, graphs, equations, and descriptions.
• MAT-08.AR.EE.04 Represent linear relationships using tables, graphs, equations, and descriptions when given a relationship in one of these forms.
• MAT-10.GM.14 Verify experimentally and justify the properties of dilations given by a center and a scale factor.
• MAT-10.GM.15 Use transformations to decide if two given figures are similar. Apply the meaning of similarity for triangles as the equality of all corresponding pairs of angles and the proportionality of all corresponding pairs of sides.
• MAT-10.GM.16 Prove similarity theorems about triangles.
• MAT-10.GM.18 Recognize how the properties of similar right triangles allow the trigonometric ratios to be defined and determine the sine, cosine, and tangent of an acute angle in a right triangle.
• MAT-10.GM.20 Solve applied problems involving right triangles using trigonometric ratios, the Pythagorean Theorem, and special right triangles (30°-60°-90° and 45°-45°-90°).
• MAT-10.GM.25 Explain and use the formulas for arc length and area of sectors of circles.
• MAT-10.GM.26 Recognize that the radian measure of an angle is the ratio of the length of the arc to the length of the radius of a circle.
• MAT-10.GM.29 Determine the midpoint or endpoint of a line segment using coordinates. (+) Find the point on a directed line segment between two given points that partitions the segment in a given ratio.
• MAT-10.GM.36 Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; scaling a model).
• MAT-12.GM.03 Determine and apply appropriate formulas to solve right and non-right triangle problems in context.

Coordinate Plane

• MAT-03.GM.G.01 In two-dimensional shapes, identify lines, angles (right, acute, obtuse), and perpendicular and parallel lines.
• MAT-05.GM.G.02 Identify the x-coordinate and y-coordinate to graph and name points in the first quadrant of the coordinate plane.
• MAT-05.GM.G.03 Form ordered pairs and graph points in the first quadrant of the coordinate plane to solve authentic word problems.
• MAT-06.GM.GF.01 Identify and position ordered pairs of rational numbers in all four quadrants of a coordinate plane.
• MAT-06.GM.GF.02 Draw polygons in the coordinate plane given coordinates for vertices. Determine the length of a side joining points with the same first or second coordinate, including authentic problems.
• MAT-10.GM.27 Develop and verify the slope criteria for parallel and perpendicular lines. Apply the slope criteria for parallel and perpendicular lines to solve geometric problems using algebra.
• MAT-10.GM.28 Verify simple geometric theorems algebraically using coordinates. Verify algebraically, using coordinates, that a given set of points produces a particular type of triangle or quadrilateral.
• MAT-10.GM.29 Determine the midpoint or endpoint of a line segment using coordinates. (+) Find the point on a directed line segment between two given points that partitions the segments in a given ratio.
• MAT-12.NO.10 Represent complex numbers on the complex plane in rectangular, trigonometric, and polar forms. Find the modulus (absolute value) of a complex number. Explain why the rectangular, trigonometric, and polar forms of a given complex number represent the same number.
• MAT-12.NO.11 Represent addition, subtraction, multiplication, conjugation, powers, and roots of complex numbers geometrically on the complex and/or polar plane; use properties of this representation for computation.
• MAT-12.NO.14 Recognize vector quantities as having both magnitude and direction, writing them in polar form.
• MAT-12.NO.15 Find the components of a vector by subtracting the coordinates of an initial point from the coordinates of a terminal point.
• MAT-12.NO.16 Solve problems involving magnitude and direction that can be represented by vectors.
• MAT-12.NO.17 Add and subtract vectors.
• MAT-12.NO.18 Multiply a vector by a scalar.
• MAT-12.AR.F.18 Explain how the unit circle in the coordinate plane enables the extension of trigonometric functions to all real numbers, interpreted as radian measures of angles traversed counterclockwise around the unit circle.
• MAT-12.AR.F.19 Use the unit circle to express the values of sine, cosine, and tangent for π - x, π + x, and 2π - x in terms of their values for x, where x is any real number.

#### MAT-10.GM.30

 10th Grade (MAT) Targeted Standard     (GM) Geometry and Measurement Learners will use visualization, spatial reasoning, geometric modeling, and measurement to investigate the characteristics of figures, perform transformations, and construct logical arguments.

## Progressions

Perimeter

• MAT-03.GM.M.06 Solve problems involving the perimeters of rectangles given the side lengths or when given the perimeter and unknown side length(s).
• MAT-04.GM.M.05 Apply the area and perimeter formulas for rectangles, including connected rectangular figures, in problems.
• MAT-05.GM.M.02 Find the area and perimeter of a rectangle, including connected rectangular figures, with fractional side lengths.
• MAT-07.GM.AV.01 Describe the relationship between the circumference and diameter of a circle (pi). Apply given formulas to calculate the area and circumference of a circle, including in authentic problems.
• MAT-10.GM.30 Compute perimeters of polygons and areas of triangles, parallelograms, trapezoids, and kites using coordinates.

Area/Surface Area

• MAT-03.GM.M.07 Recognize area as an attribute of plane figures and understand concepts of area measurement.
• MAT-03.GM.M.08 Find the area of a rectangle with whole-number side lengths by modeling with unit squares; show that area can be additive and is the same as found by multiplying the side lengths.
• MAT-04.GM.M.05 Apply the area and perimeter formulas for rectangles, including connected rectangular figures, in problems.
• MAT-05.GM.M.02 Find the area and perimeter of a rectangle, including connected rectangular figures, with fractional side lengths.
• MAT-06.GM.AV.01 Derive the relationship of the areas of triangles using the area of rectangles. Calculate the areas of triangles and quadrilaterals in authentic and mathematical problems by composing and/or decomposing them into rectangles and triangles.
• MAT-06.GM.GF.03 Represent three-dimensional figures using nets made up of rectangles and triangles (right prisms and pyramids whose bases are triangles and rectangles). Calculate the surface area of prisms with rectangular and triangular bases using nets. Apply these techniques in the context of solving authentic and mathematical problems.
• MAT-07.GM.AV.02 Calculate areas of polygons by composing and/or decomposing them into rectangles and triangles, including in authentic problems. Solve problems involving the surface area of prisms and right pyramids using nets, including authentic problems.
• MAT-10.GM.30 Compute perimeters of polygons and areas of triangles, parallelograms, trapezoids, and kites using coordinates.
• MAT-12.GM.04 Derive the formula A=1 ab sin C for the area of a triangle by drawing an auxiliary line from a vertex perpendicular to the opposite side.

#### MAT-10.GM.31

 10th Grade (MAT) Targeted Standard     (GM) Geometry and Measurement Learners will use visualization, spatial reasoning, geometric modeling, and measurement to investigate the characteristics of figures, perform transformations, and construct logical arguments.

## Progressions

Circle Measurements

• MAT-07.GM.AV.01 Describe the relationship between the circumference and diameter of a circle (pi). Apply the given formula to calculate the area and circumference of a circle, including in authentic problems.
• MAT-10.GM.22 Apply theorems about relationships between line segments and circles or angles and circles formed by radii, diameter, secants, tangents, and chords to find unknown lengths or angles.
• MAT-10.GM.25 Explain and use the formulas for arc length and area of sectors of circles.
• MAT-10.GM.26 Recognize that the radian measure of an angle is the ratio of the length of the arc to the length of the radius of a circle.
• MAT-10.GM.31 Explain derivations of the formulas for the circumference of a circle, area of a circle, and volume of a cylinder, pyramid, and cone.
• MAT-12.GM.01 Write the equation of a conic section given its special features. Convert between the standard form and general form equations of conic sections.
• MAT-12.GM.02 Identify key features of a conic section given its equation. Apply properties of conic sections in context.
• MAT-12.AR.F.18 Explain how the unit circle in the coordinate plane enables the extension of trigonometric functions to all real numbers, interpreted as radian measures of angles traversed counterclockwise around the unit circle.

#### MAT-10.GM.32

 10th Grade (MAT) Targeted Standard     (GM) Geometry and Measurement Learners will use visualization, spatial reasoning, geometric modeling, and measurement to investigate the characteristics of figures, perform transformations, and construct logical arguments.

## Progressions

Volume

• MAT-05.GM.M.03 Recognize volume as an attribute of rectangular prisms and measure volume by counting unit cubes.
• MAT-06.GM.AV.02 Describe the concept of volume of a right rectangular prism. Apply given formulas to calculate the volume of right rectangular prisms, including fractional edge lengths, including authentic problems.
• MAT-07.GM.AV.03 Solve problems involving the volume of prisms and composite solids, including authentic problems.
• MAT-08.GM.AV.01 Apply given formulas to solve problems involving the volume of cones, cylinders, and spheres, including authentic problems.
• MAT-10.GM.32 Calculate the surface area for prisms, cylinders, pyramids, cones, and spheres to solve problems.
• MAT-10.GM.33 Know and apply volume formulas for prisms, cylinders, pyramids, cones, and spheres to solve problems.
• MAT-10.GM.35 Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, BTUs per cubic foot).

#### MAT-10.GM.33

 10th Grade (MAT) Targeted Standard     (GM) Geometry and Measurement Learners will use visualization, spatial reasoning, geometric modeling, and measurement to investigate the characteristics of figures, perform transformations, and construct logical arguments.

## Progressions

Volume

• MAT-05.GM.M.03 Recognize volume as an attribute of rectangular prisms and measure volume by counting unit cubes.
• MAT-06.GM.AV.02 Describe the concept of volume of a right rectangular prism. Apply given formulas to calculate the volume of right rectangular prisms, including fractional edge lengths, including authentic problems.
• MAT-07.GM.AV.03 Solve problems involving the volume of prisms and composite solids, including authentic problems.
• MAT-08.GM.AV.01 Apply given formulas to solve problems involving the volume of cones, cylinders, and spheres, including authentic problems.
• MAT-10.GM.32 Calculate the surface area for prisms, cylinders, pyramids, cones, and spheres to solve problems.
• MAT-10.GM.33 Know and apply volume formulas for prisms, cylinders, pyramids, cones, and spheres to solve problems.
• MAT-10.GM.35 Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, BTUs per cubic foot).

#### MAT-10.GM.34

 10th Grade (MAT) Targeted Standard     (GM) Geometry and Measurement Learners will use visualization, spatial reasoning, geometric modeling, and measurement to investigate the characteristics of figures, perform transformations, and construct logical arguments.

## Progressions

Two-Dimensional Shapes

• MAT-00.GM.G.01 Name shapes and identify them as two-dimensional (squares, circles, triangles, rectangles)regardless of their orientations or overall size.
• MAT-00.GM.G.03 Compare and classify two-dimensional shapes to describe their similarities, differences, and attributes (squares, circles, triangles, rectangles).
• MAT-01.GM.G.01 Name shapes and identify them as two-dimensional (trapezoids, rhombuses, pentagons, hexagons, octagons).
• MAT-01.GM.G.03 Determine geometric attributes of two-dimensional and three-dimensional shapes.
• MAT-02.GM.G.01 Identify two-dimensional shapes (parallelograms and quadrilaterals).
• MAT-02.GM.G.03 Compose geometric shapes having specified geometric attributes, such as a given number of edges, angles, faces, vertices, and/or sides.
• MAT-03.GM.G.01 In two-dimensional shapes, identify lines, angles (right, acute, obtuse), and perpendicular and parallel lines.
• MAT-03.GM.G.02 Sort quadrilaterals into categories based on attributes.
• MAT-04.GM.G.01 Identify, label, and draw points, lines, line segments, rays, and angles (right, acute, obtuse).
• MAT-04.GM.G.02 Classify two-dimensional figures based on the presence or absence of parallel or perpendicular lines or the presence or absence of angles of specified size.
• MAT-05.GM.G.01 Classify two-dimensional figures in a hierarchy based on properties.
• MAT-10.GM.01 Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment based on the undefined notions of point, line, and plane.
• MAT-10.GM.09 Prove and apply theorems about lines and angles.
• MAT-10.GM.10 Prove and apply theorems about triangles.
• MAT-10.GM.11 Prove and apply theorems about parallelograms.
• MAT-10.GM.34 Identify the shapes of two-dimensional cross-sections of three-dimensional objects and identify three-dimensional objects generated by rotations of two-dimensional objects.

#### MAT-10.GM.35

 10th Grade (MAT) Targeted Standard     (GM) Geometry and Measurement Learners will use visualization, spatial reasoning, geometric modeling, and measurement to investigate the characteristics of figures, perform transformations, and construct logical arguments.

## Progressions

Volume

• MAT-05.GM.M.03 Recognize volume as an attribute of rectangular prisms and measure volume by counting unit cubes.
• MAT-06.GM.AV.02 Describe the concept of volume of a right rectangular prism. Apply given formulas to calculate the volume of right rectangular prisms, including fractional edge lengths, including authentic problems.
• MAT-07.GM.AV.03 Solve problems involving the volume of prisms and composite solids, including authentic problems.
• MAT-08.GM.AV.01 Apply given formulas to solve problems involving the volume of cones, cylinders, and spheres, including authentic problems.
• MAT-10.GM.32 Calculate the surface area for prisms, cylinders, pyramids, cones, and spheres to solve problems.
• MAT-10.GM.33 Know and apply volume formulas for prisms, cylinders, pyramids, cones, and spheres to solve problems.
• MAT-10.GM.35 Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, BTUs per cubic foot).

#### MAT-10.GM.36

 10th Grade (MAT) Targeted Standard     (GM) Geometry and Measurement Learners will use visualization, spatial reasoning, geometric modeling, and measurement to investigate the characteristics of figures, perform transformations, and construct logical arguments.

## Progressions

Ratio and Proportional Relationships
• MAT-06.AR.RP.01 Describe the concept of a ratio relationship between two quantities using ratio language and visual models.
• MAT-06.AR.RP.03 Make and use tables of equivalent ratios, tape diagrams, double number line diagrams, and equations to reason about ratios, rates, and unit rates.
• MAT-07.AR.RP.02 Analyze the relationships between the dependent and independent variables of a proportional relationship using graphs and tables. Explain what a point (x, y) on the graph of a proportional relationship means in terms of the situation, with special attention to the points (0, 0) and (1, k) where k is the unit rate.
• MAT-07.AR.RP.03 Identify the constant of proportionality in tables, graphs, equations, diagrams, and verbal descriptions of proportional relationships. Represent proportional relationships by an equation of the form y = kx, where k is the constant of proportionality, and describe the meaning of each variable (y, k, x) in the context of the situation.
• MAT-07.AR.RP.04 Use proportional relationships to solve multi-step problems involving ratios, percents, and scale drawings of geometric figures, including authentic problems.
• MAT-08.AR.EE.03 Explain the characteristics of a linear relationship, including identifying the slope and yintercept in tables, graphs, equations, and descriptions.
• MAT-08.AR.EE.04 Represent linear relationships using tables, graphs, equations, and descriptions when given a relationship in one of these forms.
• MAT-10.GM.14 Verify experimentally and justify the properties of dilations given by a center and a scale factor.
• MAT-10.GM.15 Use transformations to decide if two given figures are similar. Apply the meaning of similarity for triangles as the equality of all corresponding pairs of angles and the proportionality of all corresponding pairs of sides.
• MAT-10.GM.16 Prove similarity theorems about triangles.
• MAT-10.GM.18 Recognize how the properties of similar right triangles allow the trigonometric ratios to be defined and determine the sine, cosine, and tangent of an acute angle in a right triangle.
• MAT-10.GM.20 Solve applied problems involving right triangles using trigonometric ratios, the Pythagorean Theorem, and special right triangles (30°-60°-90° and 45°-45°-90°).
• MAT-10.GM.25 Explain and use the formulas for arc length and area of sectors of circles.
• MAT-10.GM.26 Recognize that the radian measure of an angle is the ratio of the length of the arc to the length of the radius of a circle.
• MAT-10.GM.29 Determine the midpoint or endpoint of a line segment using coordinates. (+) Find the point on a directed line segment between two given points that partitions the segment in a given ratio.
• MAT-10.GM.36 Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; scaling a model).
• MAT-12.GM.03 Determine and apply appropriate formulas to solve right and non-right triangle problems in context.

Units of Measurement

• MAT-03.GM.M.02 Measure and estimate liquid volumes and masses of objects using standard units. Solve one step authentic word problems involving masses or volumes given in the same units.
• MAT-04.GM.M.01 Know the relative sizes of measurement units within one system of units, including km, m, cm; kg, g; lb., oz.; l, ml; hr., min., sec. Record measurement equivalents in a two-column table.
• MAT-04.GM.M.03 Identify and use the appropriate tools, operations, and units of measurement, both customary and metric to solve problems involving time, length, weight, mass, and capacity.
• MAT-04.GM.M.02 Generate simple conversions from a larger unit to a smaller unit to solve authentic problems within a single system of measurement, both customary and metric systems.
• MAT-05.GM.M.01 Generate conversions among different-sized standard measurement units within a given measurement system, both customary and metric systems. Use these conversions in solving multi-step, authentic word problems.
• MAT-06.AR.RP.05 Convert measurement units within and between measurement systems using ratio reasoning given conversion factors.
• MAT-10.GM.36 Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; scaling a model).
• MAT-09.NO.03 Choose and interpret the scale and the origin in graphs and data displays.
• MAT-09.NO.04 Define appropriate quantities and units for the purpose of descriptive modeling.
• MAT-09.NO.05 Choose a level of accuracy or precision appropriate to limitations on measurement when reporting quantities.
• MAT-12.NO.04 Use units to understand problems and to guide the solution of multi-step problems (e.g., unit analysis). Choose and interpret units consistently in formulas. Choose and interpret the scale and the units in graphs and data displays.
• MAT-12.NO.05 Choose a level of accuracy or precision appropriate to limitations on measurement when reporting quantities.

#### MAT-10.GM.AV.00

 10th Grade (MAT) Targeted Standard    (GM) Geometry and Measurement(AV) Area and VolumeLearners will use visualization and spatial reasoning to solve problems involving the area, surface area, and volume of geometric figures.

## Progressions

PASTE

• LIST

#### MAT-10.GM.GF.00

 10th Grade (MAT) Targeted Standard    (GM) Geometry and Measurement(GF) Geometric FiguresLearners will use visualization, spatial reasoning, and geometric modeling to investigate the characteristics of figures, perform transformations, and construct logical arguments.

## Progressions

PASTE

• LIST

Page: (Previous)   1  2  3
ALL